Abstract

Generally, 3D digital holographic microscopy requires the interference of the object wave with a known reference beam under coherent illumination to perform numerical focusing. This configuration may be challenging for some applications, including the use of exotic wavelengths such as x rays, miniaturized instrumentation, etc. Single-beam intensity measurement followed by phase retrieval techniques is attractive for wavefront sensing and reconstruction, including applications with low coherence. We use this method to construct a 3D microscope using volume speckle fields. Transparent phase objects are investigated using this principle. To the best of our knowledge, this is the first report on the application of this principle applied to microscopy.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Kreis, Handbook of Holographic Interferometry (Wiley-VCH, 2005).
  2. U. Schnars and W. Juptner, Meas. Sci. Technol. 13, R85 (2002).
    [CrossRef]
  3. Y. Frauel, T. Naughton, O. Matoba, E. Tahajuerce, and B. Javidi, Proc. IEEE 94, 636 (2006).
    [CrossRef]
  4. A. Stern and B. Javidi, J. Opt. Soc. Am. A 23, 1227 (2006).
    [CrossRef]
  5. T. Nomura, B. Javidi, S. Murata, E. Nitanai, and T. Numata, Opt. Lett. 32, 481 (2007).
    [CrossRef] [PubMed]
  6. T. Zhang and I. Yamaguchi, Opt. Lett. 23, 1221 (1998).
    [CrossRef]
  7. E. Cuche, F. Bevilacqua, and C. Depeursinge, Opt. Lett. 24, 291 (1999).
    [CrossRef]
  8. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, Opt. Lett. 30, 468 (2004).
    [CrossRef]
  9. I. K. Moon, M. Daneshpanah, A. Stern, and B. Javidi, Proc. IEEE 97, 990 (2009).
    [CrossRef]
  10. F. Dubois, L. Joannes, and J.-C. Legros, Appl. Opt. 38, 7085 (1999).
    [CrossRef]
  11. A. Anand, P. Almoro, G. Pedrini, and W. Osten, Opt. Lett. 32, 1584 (2007).
    [CrossRef] [PubMed]
  12. P. F. Almoro, G. Pedrini, A. Anand, W. Osten, and S. G. Hanson, Opt. Lett. 33, 2041 (2008).
    [CrossRef] [PubMed]
  13. P. F. Almoro, G. Pedrini, A. Anand, W. Osten, and S. G. Hanson, Appl. Opt. 48, 932 (2009).
    [CrossRef] [PubMed]
  14. A. Anand, V. K. Chhaniwal, P. Almoro, G. Pedrini, and W. Osten, Opt. Lett. 34, 1522 (2009).
    [CrossRef] [PubMed]
  15. S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, and D. Alfieri, Opt. Express 13, 9935 (2005).
    [CrossRef] [PubMed]
  16. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

2009

2008

2007

2006

Y. Frauel, T. Naughton, O. Matoba, E. Tahajuerce, and B. Javidi, Proc. IEEE 94, 636 (2006).
[CrossRef]

A. Stern and B. Javidi, J. Opt. Soc. Am. A 23, 1227 (2006).
[CrossRef]

2005

2004

2002

U. Schnars and W. Juptner, Meas. Sci. Technol. 13, R85 (2002).
[CrossRef]

1999

1998

Alfieri, D.

Almoro, P.

Almoro, P. F.

Anand, A.

Bevilacqua, F.

Chhaniwal, V. K.

Colomb, T.

Cuche, E.

Daneshpanah, M.

I. K. Moon, M. Daneshpanah, A. Stern, and B. Javidi, Proc. IEEE 97, 990 (2009).
[CrossRef]

De Nicola, S.

Depeursinge, C.

Dubois, F.

Emery, Y.

Ferraro, P.

Finizio, A.

Frauel, Y.

Y. Frauel, T. Naughton, O. Matoba, E. Tahajuerce, and B. Javidi, Proc. IEEE 94, 636 (2006).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

Hanson, S. G.

Javidi, B.

I. K. Moon, M. Daneshpanah, A. Stern, and B. Javidi, Proc. IEEE 97, 990 (2009).
[CrossRef]

T. Nomura, B. Javidi, S. Murata, E. Nitanai, and T. Numata, Opt. Lett. 32, 481 (2007).
[CrossRef] [PubMed]

A. Stern and B. Javidi, J. Opt. Soc. Am. A 23, 1227 (2006).
[CrossRef]

Y. Frauel, T. Naughton, O. Matoba, E. Tahajuerce, and B. Javidi, Proc. IEEE 94, 636 (2006).
[CrossRef]

Joannes, L.

Juptner, W.

U. Schnars and W. Juptner, Meas. Sci. Technol. 13, R85 (2002).
[CrossRef]

Kreis, T.

T. Kreis, Handbook of Holographic Interferometry (Wiley-VCH, 2005).

Legros, J.-C.

Magistretti, P. J.

Marquet, P.

Matoba, O.

Y. Frauel, T. Naughton, O. Matoba, E. Tahajuerce, and B. Javidi, Proc. IEEE 94, 636 (2006).
[CrossRef]

Moon, I. K.

I. K. Moon, M. Daneshpanah, A. Stern, and B. Javidi, Proc. IEEE 97, 990 (2009).
[CrossRef]

Murata, S.

Naughton, T.

Y. Frauel, T. Naughton, O. Matoba, E. Tahajuerce, and B. Javidi, Proc. IEEE 94, 636 (2006).
[CrossRef]

Nitanai, E.

Nomura, T.

Numata, T.

Osten, W.

Pedrini, G.

Pierattini, G.

Rappaz, B.

Schnars, U.

U. Schnars and W. Juptner, Meas. Sci. Technol. 13, R85 (2002).
[CrossRef]

Stern, A.

I. K. Moon, M. Daneshpanah, A. Stern, and B. Javidi, Proc. IEEE 97, 990 (2009).
[CrossRef]

A. Stern and B. Javidi, J. Opt. Soc. Am. A 23, 1227 (2006).
[CrossRef]

Tahajuerce, E.

Y. Frauel, T. Naughton, O. Matoba, E. Tahajuerce, and B. Javidi, Proc. IEEE 94, 636 (2006).
[CrossRef]

Yamaguchi, I.

Zhang, T.

Appl. Opt.

J. Opt. Soc. Am. A

Meas. Sci. Technol.

U. Schnars and W. Juptner, Meas. Sci. Technol. 13, R85 (2002).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. IEEE

I. K. Moon, M. Daneshpanah, A. Stern, and B. Javidi, Proc. IEEE 97, 990 (2009).
[CrossRef]

Y. Frauel, T. Naughton, O. Matoba, E. Tahajuerce, and B. Javidi, Proc. IEEE 94, 636 (2006).
[CrossRef]

Other

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

T. Kreis, Handbook of Holographic Interferometry (Wiley-VCH, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental realization.

Fig. 2
Fig. 2

Optical coordinate system for recording of intensity patterns and wavefront reconstruction.

Fig. 3
Fig. 3

Simulation results: (a) reconstructed intensity and (b) reconstructed phase.

Fig. 4
Fig. 4

Experimental results for unit magnification: (a) reconstructed intensity and (b) reconstructed phase.

Fig. 5
Fig. 5

Numerical focusing at magnification of 4 for three axial planes situated at a distance of 100 μ m apart at the image plane.

Fig. 6
Fig. 6

(a) Reconstructed phase at 4 × magnification for the marked potion in Fig. 4a and (b) 3D optical path length distribution of the reconstructed object.

Metrics