Abstract

Optical tomography has recently witnessed a substantial increase in the size of the data sets used, mainly owing to the use of CCD cameras. Larger data sets render 3D reconstructions more robust, quantitative, and reproducible, but also significantly increase the computing time needed to generate the reconstructed data. Approaches working with spatial-frequencies instead of real space variables seem to be the method of choice in this case, and a direct inversion method that can produce three-dimensional images from very large detector numbers (>105) using either very large source numbers (>103) [Phys. Rev. E 64, 035601 (2001) ] or structured illumination [Opt. Lett. 34, 983 (2009) ] has been presented. However, most small animal imaging setups typically incur a practical upper limit of only 102 sources mainly due to imaging time constraints, and currently all relying on point source illumination. In this Letter, what we believe to be a new approach, which combines Fourier and real space functions, is shown, which fills the gap between traditional fiber-based small data sets that are solved in real space and the very large data sets solved entirely in spatial-frequency domain.

© 2010 Optical Society of America

Full Article  |  PDF Article
Related Articles
Diffraction tomographic imaging with photon density waves: an explicit solution

Stephen J. Norton and Tuan Vo-Dinh
J. Opt. Soc. Am. A 15(10) 2670-2677 (1998)

Singular-value analysis and optimization of experimental parameters in fluorescence molecular tomography

Edward E. Graves, Joseph P. Culver, Jorge Ripoll, Ralph Weissleder, and Vasilis Ntziachristos
J. Opt. Soc. Am. A 21(2) 231-241 (2004)

Experimental demonstration of an analytic method for image reconstruction in optical diffusion tomography with large data sets

Zheng-Min Wang, George Y. Panasyuk, Vadim A. Markel, and John C. Schotland
Opt. Lett. 30(24) 3338-3340 (2005)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription