Abstract

Diffuse optical tomography endures poor depth localization, since its sensitivity decreases severely with increased depth. In this study, we demonstrate a depth compensation algorithm (DCA), which optimally counterbalances the decay nature of light propagation in tissue so as to accurately localize absorbers in deep tissue. The novelty of DCA is to directly modify the sensitivity matrix, rather than the penalty term of regularization. DCA is based on maximum singular values (MSVs) of layered measurement sensitivities; these MSVs are inversely utilized to create a balancing weight matrix for compensating the measurement sensitivity in increased depth. Both computer simulations and laboratory experiments were performed to validate DCA. These results demonstrate that one (or two) 3-cm-deep absorber(s) can be accurately located in both lateral plane and depth within the laboratorial position errors.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. P. Gibson, J. C. Hebden, and S. R. Arridge, Phys. Med. Biol. 50, R1 (2005).
    [CrossRef] [PubMed]
  2. B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Österberg, and K. D. Paulsen, Appl. Opt. 38, 2950 (1999).
    [CrossRef]
  3. J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, J. Cereb. Blood Flow Metab. 23, 911 (2003).
    [CrossRef] [PubMed]
  4. J. P. Culver, A. M. Siegel, J. J. Stott, and D. A. Boas, Opt. Lett. 28, 2061 (2003).
    [CrossRef] [PubMed]
  5. M. A. O'Leary, D. A. Boas, B. Chance, and A. G. Yodh, Opt. Lett. 20, 426 (1995).
    [CrossRef] [PubMed]
  6. S. R. Arridge, Inverse Probl. 15, R41 (1999).
    [CrossRef]
  7. D. A. Boas, A. M. Dale, and M. A. Franceschini, Neuroimage 23, S275 (2004).
    [CrossRef] [PubMed]
  8. F. Tian, G. Alexandrakis, and H. Liu, Appl. Opt. 48, 2496 (2009).
    [CrossRef] [PubMed]
  9. X. M. Song, B. W. Pogue, S. Jiang, M. M. Doyley, and H. Dehghani, Appl. Opt. 43, 1053 (2004).
    [CrossRef] [PubMed]
  10. http://www.nirx.net.
  11. http://rabi.nmr.mgh.harvard.edu/DOT/resources.htm.

2009

2005

A. P. Gibson, J. C. Hebden, and S. R. Arridge, Phys. Med. Biol. 50, R1 (2005).
[CrossRef] [PubMed]

2004

2003

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, J. Cereb. Blood Flow Metab. 23, 911 (2003).
[CrossRef] [PubMed]

J. P. Culver, A. M. Siegel, J. J. Stott, and D. A. Boas, Opt. Lett. 28, 2061 (2003).
[CrossRef] [PubMed]

1999

1995

Alexandrakis, G.

Arridge, S. R.

A. P. Gibson, J. C. Hebden, and S. R. Arridge, Phys. Med. Biol. 50, R1 (2005).
[CrossRef] [PubMed]

S. R. Arridge, Inverse Probl. 15, R41 (1999).
[CrossRef]

Boas, D. A.

Chance, B.

Cheung, C.

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, J. Cereb. Blood Flow Metab. 23, 911 (2003).
[CrossRef] [PubMed]

Culver, J. P.

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, J. Cereb. Blood Flow Metab. 23, 911 (2003).
[CrossRef] [PubMed]

J. P. Culver, A. M. Siegel, J. J. Stott, and D. A. Boas, Opt. Lett. 28, 2061 (2003).
[CrossRef] [PubMed]

Dale, A. M.

D. A. Boas, A. M. Dale, and M. A. Franceschini, Neuroimage 23, S275 (2004).
[CrossRef] [PubMed]

Dehghani, H.

Doyley, M. M.

Durduran, T.

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, J. Cereb. Blood Flow Metab. 23, 911 (2003).
[CrossRef] [PubMed]

Franceschini, M. A.

D. A. Boas, A. M. Dale, and M. A. Franceschini, Neuroimage 23, S275 (2004).
[CrossRef] [PubMed]

Furuya, D.

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, J. Cereb. Blood Flow Metab. 23, 911 (2003).
[CrossRef] [PubMed]

Gibson, A. P.

A. P. Gibson, J. C. Hebden, and S. R. Arridge, Phys. Med. Biol. 50, R1 (2005).
[CrossRef] [PubMed]

Greenberg, J. H.

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, J. Cereb. Blood Flow Metab. 23, 911 (2003).
[CrossRef] [PubMed]

Hebden, J. C.

A. P. Gibson, J. C. Hebden, and S. R. Arridge, Phys. Med. Biol. 50, R1 (2005).
[CrossRef] [PubMed]

Jiang, S.

Liu, H.

McBride, T. O.

O'Leary, M. A.

Österberg, U. L.

Paulsen, K. D.

Pogue, B. W.

Prewitt, J.

Siegel, A. M.

Song, X. M.

Stott, J. J.

Tian, F.

Yodh, A. G.

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, J. Cereb. Blood Flow Metab. 23, 911 (2003).
[CrossRef] [PubMed]

M. A. O'Leary, D. A. Boas, B. Chance, and A. G. Yodh, Opt. Lett. 20, 426 (1995).
[CrossRef] [PubMed]

Appl. Opt.

Inverse Probl.

S. R. Arridge, Inverse Probl. 15, R41 (1999).
[CrossRef]

J. Cereb. Blood Flow Metab.

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, J. Cereb. Blood Flow Metab. 23, 911 (2003).
[CrossRef] [PubMed]

Neuroimage

D. A. Boas, A. M. Dale, and M. A. Franceschini, Neuroimage 23, S275 (2004).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Med. Biol.

A. P. Gibson, J. C. Hebden, and S. R. Arridge, Phys. Med. Biol. 50, R1 (2005).
[CrossRef] [PubMed]

Other

http://www.nirx.net.

http://rabi.nmr.mgh.harvard.edu/DOT/resources.htm.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Dependence of (a) CNR and (b) PE of reconstructed images on object depth, z, and γ for an object ( d = 4   mm ) located at center of x y plane. They were generated when simulations moved the object along z axis ( z = 1 to −5 cm) below the measurement surface ( z = 0 ) , while γ value increased from 0 to 3. The dashed rectangles outline the uniform values of CNR and PE.

Fig. 2
Fig. 2

Reconstructed DOT images of a single embedded object placed in the center of x y plane and at z = 3   cm , as marked by the dashed circle. (a) and (c) are obtained with γ = 0 for the x y and x z plane; (b) and (d) are obtained with γ = 1.6 for the same respective planes. The color scale is normalized between 0 and 1.

Fig. 3
Fig. 3

Reconstructed images of two objects placed symmetrically around the center of x y plane and z = 3   cm (dashed circles). (a) and (c) are with γ = 0 , while (b) and (d) with γ = 1.6 . The color scale is normalized between 0 and 1.

Metrics