Abstract

Diffuse optical tomography endures poor depth localization, since its sensitivity decreases severely with increased depth. In this study, we demonstrate a depth compensation algorithm (DCA), which optimally counterbalances the decay nature of light propagation in tissue so as to accurately localize absorbers in deep tissue. The novelty of DCA is to directly modify the sensitivity matrix, rather than the penalty term of regularization. DCA is based on maximum singular values (MSVs) of layered measurement sensitivities; these MSVs are inversely utilized to create a balancing weight matrix for compensating the measurement sensitivity in increased depth. Both computer simulations and laboratory experiments were performed to validate DCA. These results demonstrate that one (or two) 3-cm-deep absorber(s) can be accurately located in both lateral plane and depth within the laboratorial position errors.

© 2010 Optical Society of America

Full Article  |  PDF Article
Related Articles
Optimal linear inverse solution with multiple priors in diffuse optical tomography

Ang Li, Greg Boverman, Yiheng Zhang, Dana Brooks, Eric L. Miller, Misha E. Kilmer, Quan Zhang, Elizabeth M. C. Hillman, and David A. Boas
Appl. Opt. 44(10) 1948-1956 (2005)

Improving depth resolution of diffuse optical tomography with a layer-based sigmoid adjustment method

Qing Zhao, Lijun Ji, and Tianzi Jiang
Opt. Express 15(7) 4018-4029 (2007)

Improving image quality of diffuse optical tomography with a projection-error-based adaptive regularization method

Haijing Niu, Ping Guo, Lijun Ji, Qing Zhao, and Tianzi Jiang
Opt. Express 16(17) 12423-12434 (2008)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription