Abstract

Based on five-level rate-equation theory, we develop the laser-pulse-duration dependence of two-photon-absorption-induced singlet and triplet excited-state absorptions (ESAs). We present analytical expressions for the effective three-photon absorption coefficients caused by both singlet and triplet ESAs under the pulsed excitation on time scales from femtoseconds to microseconds. We demonstrate that the triplet ESA is predominant with longer laser pulses (microseconds to tens of nanoseconds) and that the resultant nonlinear absorption (NLA) can be adequately interpreted by a simplified four-level model. Under the excitation of picosecond laser pulses, generally speaking, the competition between singlet and triplet ESAs is observable. In this instance, the photodynamics of the system can be understood by a five-level model. In the femtosecond regime, however, a three-level model is validated in the prediction of NLA, because the triplet ESA becomes negligible.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription