Abstract

Based on five-level rate-equation theory, we develop the laser-pulse-duration dependence of two-photon-absorption-induced singlet and triplet excited-state absorptions (ESAs). We present analytical expressions for the effective three-photon absorption coefficients caused by both singlet and triplet ESAs under the pulsed excitation on time scales from femtoseconds to microseconds. We demonstrate that the triplet ESA is predominant with longer laser pulses (microseconds to tens of nanoseconds) and that the resultant nonlinear absorption (NLA) can be adequately interpreted by a simplified four-level model. Under the excitation of picosecond laser pulses, generally speaking, the competition between singlet and triplet ESAs is observable. In this instance, the photodynamics of the system can be understood by a five-level model. In the femtosecond regime, however, a three-level model is validated in the prediction of NLA, because the triplet ESA becomes negligible.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. S. He, L. S. Tan, Q. D. Zheng, and P. N. Prasad, Chem. Rev. 108, 1245 (2008).
    [CrossRef] [PubMed]
  2. R. L. Sutherland, M. C. Brant, J. Heinrichs, J. E. Slagle, D. G. McLean, and P. A. Fleitz, J. Opt. Soc. Am. B 22, 1939 (2005).
    [CrossRef]
  3. P. P. Kiran, D. R. Reddy, A. K. Dharmadhikari, B. G. Maiya, G. R. Kumar, and D. N. Rao, Chem. Phys. Lett. 418, 442 (2006).
    [CrossRef]
  4. P. A. Kurian, C. Vijayan, C. S. S. Sandeep, R. Philip, and K. Sathiyamoorthy, Nanotechnology 18, 075708 (2007).
    [CrossRef] [PubMed]
  5. F. Wu, G. Zhang, W. Tian, W. Chen, G. Zhao, S. Cao, and W. Xie, J. Opt. A 11, 065206 (2009).
    [CrossRef]
  6. M. Fakis, G. Tsigaridas, I. Polyzos, V. Giannetas, P. Persphonis, I. Spiliopoulos, and J. Mikroyannidis, Chem. Phys. Lett. 342, 155 (2001).
    [CrossRef]
  7. Y. Gao and M. J. Potasek, Appl. Opt. 45, 2521 (2006).
    [CrossRef] [PubMed]
  8. J. M. Hales, M. Cozzuol, T. E. O. Screen, H. L. Anderson, and J. W. Perry, Opt. Express 17, 18478 (2009).
    [CrossRef]
  9. B. Gu, W. Ji, X. Q. Huang, P. S. Patil, and S. M. Dharmaprakash, J. Appl. Phys. 106, 033511 (2009).
    [CrossRef]
  10. B. Gu, W. Ji, X. Q. Huang, P. S. Patil, and S. M. Dharmaprakash, Opt. Express 17, 1126 (2009).
    [CrossRef] [PubMed]
  11. I. C. Khoo, S. Webster, S. Kubo, W. J. Youngblood, J. D. Liou, T. E. Mallouk, P. Lin, D. J. Hagan, and E. W. Van Stryland, J. Mater. Chem. 19, 7525 (2009).
    [CrossRef]
  12. B. Gu, W. Ji, P. S. Patil, S. M. Dharmaprakash, and H. T. Wang, Appl. Phys. Lett. 92, 091118 (2008).
    [CrossRef]
  13. B. Gu, Y. Sun, and W. Ji, Opt. Express 16, 17745 (2008).
    [CrossRef] [PubMed]

2009 (5)

J. M. Hales, M. Cozzuol, T. E. O. Screen, H. L. Anderson, and J. W. Perry, Opt. Express 17, 18478 (2009).
[CrossRef]

B. Gu, W. Ji, X. Q. Huang, P. S. Patil, and S. M. Dharmaprakash, J. Appl. Phys. 106, 033511 (2009).
[CrossRef]

B. Gu, W. Ji, X. Q. Huang, P. S. Patil, and S. M. Dharmaprakash, Opt. Express 17, 1126 (2009).
[CrossRef] [PubMed]

I. C. Khoo, S. Webster, S. Kubo, W. J. Youngblood, J. D. Liou, T. E. Mallouk, P. Lin, D. J. Hagan, and E. W. Van Stryland, J. Mater. Chem. 19, 7525 (2009).
[CrossRef]

F. Wu, G. Zhang, W. Tian, W. Chen, G. Zhao, S. Cao, and W. Xie, J. Opt. A 11, 065206 (2009).
[CrossRef]

2008 (3)

B. Gu, W. Ji, P. S. Patil, S. M. Dharmaprakash, and H. T. Wang, Appl. Phys. Lett. 92, 091118 (2008).
[CrossRef]

B. Gu, Y. Sun, and W. Ji, Opt. Express 16, 17745 (2008).
[CrossRef] [PubMed]

G. S. He, L. S. Tan, Q. D. Zheng, and P. N. Prasad, Chem. Rev. 108, 1245 (2008).
[CrossRef] [PubMed]

2007 (1)

P. A. Kurian, C. Vijayan, C. S. S. Sandeep, R. Philip, and K. Sathiyamoorthy, Nanotechnology 18, 075708 (2007).
[CrossRef] [PubMed]

2006 (2)

P. P. Kiran, D. R. Reddy, A. K. Dharmadhikari, B. G. Maiya, G. R. Kumar, and D. N. Rao, Chem. Phys. Lett. 418, 442 (2006).
[CrossRef]

Y. Gao and M. J. Potasek, Appl. Opt. 45, 2521 (2006).
[CrossRef] [PubMed]

2005 (1)

2001 (1)

M. Fakis, G. Tsigaridas, I. Polyzos, V. Giannetas, P. Persphonis, I. Spiliopoulos, and J. Mikroyannidis, Chem. Phys. Lett. 342, 155 (2001).
[CrossRef]

Anderson, H. L.

Brant, M. C.

Cao, S.

F. Wu, G. Zhang, W. Tian, W. Chen, G. Zhao, S. Cao, and W. Xie, J. Opt. A 11, 065206 (2009).
[CrossRef]

Chen, W.

F. Wu, G. Zhang, W. Tian, W. Chen, G. Zhao, S. Cao, and W. Xie, J. Opt. A 11, 065206 (2009).
[CrossRef]

Cozzuol, M.

Dharmadhikari, A. K.

P. P. Kiran, D. R. Reddy, A. K. Dharmadhikari, B. G. Maiya, G. R. Kumar, and D. N. Rao, Chem. Phys. Lett. 418, 442 (2006).
[CrossRef]

Dharmaprakash, S. M.

B. Gu, W. Ji, X. Q. Huang, P. S. Patil, and S. M. Dharmaprakash, J. Appl. Phys. 106, 033511 (2009).
[CrossRef]

B. Gu, W. Ji, X. Q. Huang, P. S. Patil, and S. M. Dharmaprakash, Opt. Express 17, 1126 (2009).
[CrossRef] [PubMed]

B. Gu, W. Ji, P. S. Patil, S. M. Dharmaprakash, and H. T. Wang, Appl. Phys. Lett. 92, 091118 (2008).
[CrossRef]

Fakis, M.

M. Fakis, G. Tsigaridas, I. Polyzos, V. Giannetas, P. Persphonis, I. Spiliopoulos, and J. Mikroyannidis, Chem. Phys. Lett. 342, 155 (2001).
[CrossRef]

Fleitz, P. A.

Gao, Y.

Giannetas, V.

M. Fakis, G. Tsigaridas, I. Polyzos, V. Giannetas, P. Persphonis, I. Spiliopoulos, and J. Mikroyannidis, Chem. Phys. Lett. 342, 155 (2001).
[CrossRef]

Gu, B.

B. Gu, W. Ji, X. Q. Huang, P. S. Patil, and S. M. Dharmaprakash, Opt. Express 17, 1126 (2009).
[CrossRef] [PubMed]

B. Gu, W. Ji, X. Q. Huang, P. S. Patil, and S. M. Dharmaprakash, J. Appl. Phys. 106, 033511 (2009).
[CrossRef]

B. Gu, Y. Sun, and W. Ji, Opt. Express 16, 17745 (2008).
[CrossRef] [PubMed]

B. Gu, W. Ji, P. S. Patil, S. M. Dharmaprakash, and H. T. Wang, Appl. Phys. Lett. 92, 091118 (2008).
[CrossRef]

Hagan, D. J.

I. C. Khoo, S. Webster, S. Kubo, W. J. Youngblood, J. D. Liou, T. E. Mallouk, P. Lin, D. J. Hagan, and E. W. Van Stryland, J. Mater. Chem. 19, 7525 (2009).
[CrossRef]

Hales, J. M.

He, G. S.

G. S. He, L. S. Tan, Q. D. Zheng, and P. N. Prasad, Chem. Rev. 108, 1245 (2008).
[CrossRef] [PubMed]

Heinrichs, J.

Huang, X. Q.

B. Gu, W. Ji, X. Q. Huang, P. S. Patil, and S. M. Dharmaprakash, J. Appl. Phys. 106, 033511 (2009).
[CrossRef]

B. Gu, W. Ji, X. Q. Huang, P. S. Patil, and S. M. Dharmaprakash, Opt. Express 17, 1126 (2009).
[CrossRef] [PubMed]

Ji, W.

B. Gu, W. Ji, X. Q. Huang, P. S. Patil, and S. M. Dharmaprakash, Opt. Express 17, 1126 (2009).
[CrossRef] [PubMed]

B. Gu, W. Ji, X. Q. Huang, P. S. Patil, and S. M. Dharmaprakash, J. Appl. Phys. 106, 033511 (2009).
[CrossRef]

B. Gu, W. Ji, P. S. Patil, S. M. Dharmaprakash, and H. T. Wang, Appl. Phys. Lett. 92, 091118 (2008).
[CrossRef]

B. Gu, Y. Sun, and W. Ji, Opt. Express 16, 17745 (2008).
[CrossRef] [PubMed]

Khoo, I. C.

I. C. Khoo, S. Webster, S. Kubo, W. J. Youngblood, J. D. Liou, T. E. Mallouk, P. Lin, D. J. Hagan, and E. W. Van Stryland, J. Mater. Chem. 19, 7525 (2009).
[CrossRef]

Kiran, P. P.

P. P. Kiran, D. R. Reddy, A. K. Dharmadhikari, B. G. Maiya, G. R. Kumar, and D. N. Rao, Chem. Phys. Lett. 418, 442 (2006).
[CrossRef]

Kubo, S.

I. C. Khoo, S. Webster, S. Kubo, W. J. Youngblood, J. D. Liou, T. E. Mallouk, P. Lin, D. J. Hagan, and E. W. Van Stryland, J. Mater. Chem. 19, 7525 (2009).
[CrossRef]

Kumar, G. R.

P. P. Kiran, D. R. Reddy, A. K. Dharmadhikari, B. G. Maiya, G. R. Kumar, and D. N. Rao, Chem. Phys. Lett. 418, 442 (2006).
[CrossRef]

Kurian, P. A.

P. A. Kurian, C. Vijayan, C. S. S. Sandeep, R. Philip, and K. Sathiyamoorthy, Nanotechnology 18, 075708 (2007).
[CrossRef] [PubMed]

Lin, P.

I. C. Khoo, S. Webster, S. Kubo, W. J. Youngblood, J. D. Liou, T. E. Mallouk, P. Lin, D. J. Hagan, and E. W. Van Stryland, J. Mater. Chem. 19, 7525 (2009).
[CrossRef]

Liou, J. D.

I. C. Khoo, S. Webster, S. Kubo, W. J. Youngblood, J. D. Liou, T. E. Mallouk, P. Lin, D. J. Hagan, and E. W. Van Stryland, J. Mater. Chem. 19, 7525 (2009).
[CrossRef]

Maiya, B. G.

P. P. Kiran, D. R. Reddy, A. K. Dharmadhikari, B. G. Maiya, G. R. Kumar, and D. N. Rao, Chem. Phys. Lett. 418, 442 (2006).
[CrossRef]

Mallouk, T. E.

I. C. Khoo, S. Webster, S. Kubo, W. J. Youngblood, J. D. Liou, T. E. Mallouk, P. Lin, D. J. Hagan, and E. W. Van Stryland, J. Mater. Chem. 19, 7525 (2009).
[CrossRef]

McLean, D. G.

Mikroyannidis, J.

M. Fakis, G. Tsigaridas, I. Polyzos, V. Giannetas, P. Persphonis, I. Spiliopoulos, and J. Mikroyannidis, Chem. Phys. Lett. 342, 155 (2001).
[CrossRef]

Patil, P. S.

B. Gu, W. Ji, X. Q. Huang, P. S. Patil, and S. M. Dharmaprakash, Opt. Express 17, 1126 (2009).
[CrossRef] [PubMed]

B. Gu, W. Ji, X. Q. Huang, P. S. Patil, and S. M. Dharmaprakash, J. Appl. Phys. 106, 033511 (2009).
[CrossRef]

B. Gu, W. Ji, P. S. Patil, S. M. Dharmaprakash, and H. T. Wang, Appl. Phys. Lett. 92, 091118 (2008).
[CrossRef]

Perry, J. W.

Persphonis, P.

M. Fakis, G. Tsigaridas, I. Polyzos, V. Giannetas, P. Persphonis, I. Spiliopoulos, and J. Mikroyannidis, Chem. Phys. Lett. 342, 155 (2001).
[CrossRef]

Philip, R.

P. A. Kurian, C. Vijayan, C. S. S. Sandeep, R. Philip, and K. Sathiyamoorthy, Nanotechnology 18, 075708 (2007).
[CrossRef] [PubMed]

Polyzos, I.

M. Fakis, G. Tsigaridas, I. Polyzos, V. Giannetas, P. Persphonis, I. Spiliopoulos, and J. Mikroyannidis, Chem. Phys. Lett. 342, 155 (2001).
[CrossRef]

Potasek, M. J.

Prasad, P. N.

G. S. He, L. S. Tan, Q. D. Zheng, and P. N. Prasad, Chem. Rev. 108, 1245 (2008).
[CrossRef] [PubMed]

Rao, D. N.

P. P. Kiran, D. R. Reddy, A. K. Dharmadhikari, B. G. Maiya, G. R. Kumar, and D. N. Rao, Chem. Phys. Lett. 418, 442 (2006).
[CrossRef]

Reddy, D. R.

P. P. Kiran, D. R. Reddy, A. K. Dharmadhikari, B. G. Maiya, G. R. Kumar, and D. N. Rao, Chem. Phys. Lett. 418, 442 (2006).
[CrossRef]

Sandeep, C. S. S.

P. A. Kurian, C. Vijayan, C. S. S. Sandeep, R. Philip, and K. Sathiyamoorthy, Nanotechnology 18, 075708 (2007).
[CrossRef] [PubMed]

Sathiyamoorthy, K.

P. A. Kurian, C. Vijayan, C. S. S. Sandeep, R. Philip, and K. Sathiyamoorthy, Nanotechnology 18, 075708 (2007).
[CrossRef] [PubMed]

Screen, T. E. O.

Slagle, J. E.

Spiliopoulos, I.

M. Fakis, G. Tsigaridas, I. Polyzos, V. Giannetas, P. Persphonis, I. Spiliopoulos, and J. Mikroyannidis, Chem. Phys. Lett. 342, 155 (2001).
[CrossRef]

Sun, Y.

Sutherland, R. L.

Tan, L. S.

G. S. He, L. S. Tan, Q. D. Zheng, and P. N. Prasad, Chem. Rev. 108, 1245 (2008).
[CrossRef] [PubMed]

Tian, W.

F. Wu, G. Zhang, W. Tian, W. Chen, G. Zhao, S. Cao, and W. Xie, J. Opt. A 11, 065206 (2009).
[CrossRef]

Tsigaridas, G.

M. Fakis, G. Tsigaridas, I. Polyzos, V. Giannetas, P. Persphonis, I. Spiliopoulos, and J. Mikroyannidis, Chem. Phys. Lett. 342, 155 (2001).
[CrossRef]

Van Stryland, E. W.

I. C. Khoo, S. Webster, S. Kubo, W. J. Youngblood, J. D. Liou, T. E. Mallouk, P. Lin, D. J. Hagan, and E. W. Van Stryland, J. Mater. Chem. 19, 7525 (2009).
[CrossRef]

Vijayan, C.

P. A. Kurian, C. Vijayan, C. S. S. Sandeep, R. Philip, and K. Sathiyamoorthy, Nanotechnology 18, 075708 (2007).
[CrossRef] [PubMed]

Wang, H. T.

B. Gu, W. Ji, P. S. Patil, S. M. Dharmaprakash, and H. T. Wang, Appl. Phys. Lett. 92, 091118 (2008).
[CrossRef]

Webster, S.

I. C. Khoo, S. Webster, S. Kubo, W. J. Youngblood, J. D. Liou, T. E. Mallouk, P. Lin, D. J. Hagan, and E. W. Van Stryland, J. Mater. Chem. 19, 7525 (2009).
[CrossRef]

Wu, F.

F. Wu, G. Zhang, W. Tian, W. Chen, G. Zhao, S. Cao, and W. Xie, J. Opt. A 11, 065206 (2009).
[CrossRef]

Xie, W.

F. Wu, G. Zhang, W. Tian, W. Chen, G. Zhao, S. Cao, and W. Xie, J. Opt. A 11, 065206 (2009).
[CrossRef]

Youngblood, W. J.

I. C. Khoo, S. Webster, S. Kubo, W. J. Youngblood, J. D. Liou, T. E. Mallouk, P. Lin, D. J. Hagan, and E. W. Van Stryland, J. Mater. Chem. 19, 7525 (2009).
[CrossRef]

Zhang, G.

F. Wu, G. Zhang, W. Tian, W. Chen, G. Zhao, S. Cao, and W. Xie, J. Opt. A 11, 065206 (2009).
[CrossRef]

Zhao, G.

F. Wu, G. Zhang, W. Tian, W. Chen, G. Zhao, S. Cao, and W. Xie, J. Opt. A 11, 065206 (2009).
[CrossRef]

Zheng, Q. D.

G. S. He, L. S. Tan, Q. D. Zheng, and P. N. Prasad, Chem. Rev. 108, 1245 (2008).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

B. Gu, W. Ji, P. S. Patil, S. M. Dharmaprakash, and H. T. Wang, Appl. Phys. Lett. 92, 091118 (2008).
[CrossRef]

Chem. Phys. Lett. (2)

P. P. Kiran, D. R. Reddy, A. K. Dharmadhikari, B. G. Maiya, G. R. Kumar, and D. N. Rao, Chem. Phys. Lett. 418, 442 (2006).
[CrossRef]

M. Fakis, G. Tsigaridas, I. Polyzos, V. Giannetas, P. Persphonis, I. Spiliopoulos, and J. Mikroyannidis, Chem. Phys. Lett. 342, 155 (2001).
[CrossRef]

Chem. Rev. (1)

G. S. He, L. S. Tan, Q. D. Zheng, and P. N. Prasad, Chem. Rev. 108, 1245 (2008).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

B. Gu, W. Ji, X. Q. Huang, P. S. Patil, and S. M. Dharmaprakash, J. Appl. Phys. 106, 033511 (2009).
[CrossRef]

J. Mater. Chem. (1)

I. C. Khoo, S. Webster, S. Kubo, W. J. Youngblood, J. D. Liou, T. E. Mallouk, P. Lin, D. J. Hagan, and E. W. Van Stryland, J. Mater. Chem. 19, 7525 (2009).
[CrossRef]

J. Opt. A (1)

F. Wu, G. Zhang, W. Tian, W. Chen, G. Zhao, S. Cao, and W. Xie, J. Opt. A 11, 065206 (2009).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nanotechnology (1)

P. A. Kurian, C. Vijayan, C. S. S. Sandeep, R. Philip, and K. Sathiyamoorthy, Nanotechnology 18, 075708 (2007).
[CrossRef] [PubMed]

Opt. Express (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Energy-level diagram for (a) 2PA-induced singlet and triplet ESAs, (b) 2PA-induced triplet ESA, and (c) 2PA-induced singlet ESA.

Fig. 2
Fig. 2

Pulse-duration dependence of both α S and α T values when taking α 2 = 2.3 × 10 2 cm GW , σ S = 1.3 × 10 17 cm 2 , σ T = 6.5 × 10 17 cm 2 , ϕ T = 0.05 , τ S = 2.5 ps , τ T = 200 ns , and ω = 1.60 eV . The squares ( α T ) and circles ( α S ) are numerical simulations, while the solid lines denote the corresponding analytical results.

Tables (1)

Tables Icon

Table 1 Effective 3PA Coefficients Caused by Both Singlet and Triplet ESAs for Laser Pulses at Different Conditions

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I z = α 2 I 2 σ S N S 1 I σ T N T 1 I ,
N S 1 t = α 2 I 2 2 ω N S 1 τ S ,
N T 1 t = ϕ T τ S N S 1 N T 1 τ T ,
N S 1 ( t ) = α 2 I 0 2 2 ω G ( t ) ,
N T 1 ( t ) = ϕ T α 2 I 0 2 2 ω τ S t G ( t ) exp [ ( t t ) τ T ] d t ,
G ( t ) = t exp ( 2 t 2 τ 2 ) exp [ ( t t ) τ S ] d t .
I ( r , z ; t ) z = α 2 I 2 ( r , z ; t ) ( α S + α T ) I 3 ( r , z ; t ) ,
α S = σ S α 2 2 ω 3 π τ + exp ( t 2 τ 2 ) G ( t ) d t ,
α T = σ T ϕ T α 2 2 ω τ S 3 π τ + exp ( t 2 τ 2 ) [ t G ( t ) exp ( t t τ T ) d t ] d t .

Metrics