Abstract

The +1 order diffraction of polarization holographic gratings generated by two linear orthogonally polarized writing beams in dye-doped liquid-crystal films were increased by using two recording beams with unequal intensity. The maximum diffraction efficiency of the polarization holograms in our experimental sample can reach 23% when the intensity ratio of two recording beams is 7:1, and this value is almost triple that when the intensity ratio of two recording beams is 1:1.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Riehemann, G. V. Bally, B. I. Sturman, and S. G. Odoulov, Appl. Phys. B 65, 535 (1997).
    [CrossRef]
  2. W. D. Koek, N. Bhattacharya, J. J. M. Braat, V. S. S. Chan, and J. Westerweel, Opt. Lett. 29, 101 (2004).
    [CrossRef] [PubMed]
  3. J. R. Wang, C. R. Lee, M. R. Lee, and A. Y. G. Fuh, Opt. Lett. 29, 110 (2004).
    [CrossRef] [PubMed]
  4. A. Y. G. Fuh, C. R. Lee, and T. S. Mo, J. Opt. Soc. Am. B 19, 2590 (2002).
    [CrossRef]
  5. F. Lagugné Labarthet, P. Rochon, and A. Natansohn, Appl. Phys. Lett. 75, 1377 (1999).
    [CrossRef]
  6. S. Pagès, F. Lagugné-Labarthet, T. Buffeteau, and C. Sourisseau, Appl. Phys. B 75, 541 (2002).
    [CrossRef]
  7. L. Nikolova, T. Todorov, V. Dragostinova, T. Petrova, and N. Tomova, Opt. Lett. 27, 92 (2002).
    [CrossRef]
  8. H. Ono, F. Takahashi, A. Emoto, and N. Kawatsuki, J. Appl. Phys. 97, 053508 (2005).
    [CrossRef]
  9. X. Pan, C. Wang, H. Xu, C. Wang, and X. Zhang, Appl. Phys. B 86, 693 (2007).
    [CrossRef]
  10. T. Juchem and N. Hampp, Opt. Lett. 26, 1702 (2001).
    [CrossRef]
  11. F. Lagugné Labarthet, T. Buffeteau, and C. Sourisseau, J. Phys. Chem. B 102, 2654 (1998).
    [CrossRef]

2007

X. Pan, C. Wang, H. Xu, C. Wang, and X. Zhang, Appl. Phys. B 86, 693 (2007).
[CrossRef]

2005

H. Ono, F. Takahashi, A. Emoto, and N. Kawatsuki, J. Appl. Phys. 97, 053508 (2005).
[CrossRef]

2004

2002

2001

1999

F. Lagugné Labarthet, P. Rochon, and A. Natansohn, Appl. Phys. Lett. 75, 1377 (1999).
[CrossRef]

1998

F. Lagugné Labarthet, T. Buffeteau, and C. Sourisseau, J. Phys. Chem. B 102, 2654 (1998).
[CrossRef]

1997

S. Riehemann, G. V. Bally, B. I. Sturman, and S. G. Odoulov, Appl. Phys. B 65, 535 (1997).
[CrossRef]

Bally, G. V.

S. Riehemann, G. V. Bally, B. I. Sturman, and S. G. Odoulov, Appl. Phys. B 65, 535 (1997).
[CrossRef]

Bhattacharya, N.

Braat, J. J. M.

Buffeteau, T.

S. Pagès, F. Lagugné-Labarthet, T. Buffeteau, and C. Sourisseau, Appl. Phys. B 75, 541 (2002).
[CrossRef]

F. Lagugné Labarthet, T. Buffeteau, and C. Sourisseau, J. Phys. Chem. B 102, 2654 (1998).
[CrossRef]

Chan, V. S. S.

Dragostinova, V.

Emoto, A.

H. Ono, F. Takahashi, A. Emoto, and N. Kawatsuki, J. Appl. Phys. 97, 053508 (2005).
[CrossRef]

Fuh, A. Y. G.

Hampp, N.

Juchem, T.

Kawatsuki, N.

H. Ono, F. Takahashi, A. Emoto, and N. Kawatsuki, J. Appl. Phys. 97, 053508 (2005).
[CrossRef]

Koek, W. D.

Lagugné Labarthet, F.

F. Lagugné Labarthet, P. Rochon, and A. Natansohn, Appl. Phys. Lett. 75, 1377 (1999).
[CrossRef]

F. Lagugné Labarthet, T. Buffeteau, and C. Sourisseau, J. Phys. Chem. B 102, 2654 (1998).
[CrossRef]

Lagugné-Labarthet, F.

S. Pagès, F. Lagugné-Labarthet, T. Buffeteau, and C. Sourisseau, Appl. Phys. B 75, 541 (2002).
[CrossRef]

Lee, C. R.

Lee, M. R.

Mo, T. S.

Natansohn, A.

F. Lagugné Labarthet, P. Rochon, and A. Natansohn, Appl. Phys. Lett. 75, 1377 (1999).
[CrossRef]

Nikolova, L.

Odoulov, S. G.

S. Riehemann, G. V. Bally, B. I. Sturman, and S. G. Odoulov, Appl. Phys. B 65, 535 (1997).
[CrossRef]

Ono, H.

H. Ono, F. Takahashi, A. Emoto, and N. Kawatsuki, J. Appl. Phys. 97, 053508 (2005).
[CrossRef]

Pagès, S.

S. Pagès, F. Lagugné-Labarthet, T. Buffeteau, and C. Sourisseau, Appl. Phys. B 75, 541 (2002).
[CrossRef]

Pan, X.

X. Pan, C. Wang, H. Xu, C. Wang, and X. Zhang, Appl. Phys. B 86, 693 (2007).
[CrossRef]

Petrova, T.

Riehemann, S.

S. Riehemann, G. V. Bally, B. I. Sturman, and S. G. Odoulov, Appl. Phys. B 65, 535 (1997).
[CrossRef]

Rochon, P.

F. Lagugné Labarthet, P. Rochon, and A. Natansohn, Appl. Phys. Lett. 75, 1377 (1999).
[CrossRef]

Sourisseau, C.

S. Pagès, F. Lagugné-Labarthet, T. Buffeteau, and C. Sourisseau, Appl. Phys. B 75, 541 (2002).
[CrossRef]

F. Lagugné Labarthet, T. Buffeteau, and C. Sourisseau, J. Phys. Chem. B 102, 2654 (1998).
[CrossRef]

Sturman, B. I.

S. Riehemann, G. V. Bally, B. I. Sturman, and S. G. Odoulov, Appl. Phys. B 65, 535 (1997).
[CrossRef]

Takahashi, F.

H. Ono, F. Takahashi, A. Emoto, and N. Kawatsuki, J. Appl. Phys. 97, 053508 (2005).
[CrossRef]

Todorov, T.

Tomova, N.

Wang, C.

X. Pan, C. Wang, H. Xu, C. Wang, and X. Zhang, Appl. Phys. B 86, 693 (2007).
[CrossRef]

X. Pan, C. Wang, H. Xu, C. Wang, and X. Zhang, Appl. Phys. B 86, 693 (2007).
[CrossRef]

Wang, J. R.

Westerweel, J.

Xu, H.

X. Pan, C. Wang, H. Xu, C. Wang, and X. Zhang, Appl. Phys. B 86, 693 (2007).
[CrossRef]

Zhang, X.

X. Pan, C. Wang, H. Xu, C. Wang, and X. Zhang, Appl. Phys. B 86, 693 (2007).
[CrossRef]

Appl. Phys. B

S. Riehemann, G. V. Bally, B. I. Sturman, and S. G. Odoulov, Appl. Phys. B 65, 535 (1997).
[CrossRef]

S. Pagès, F. Lagugné-Labarthet, T. Buffeteau, and C. Sourisseau, Appl. Phys. B 75, 541 (2002).
[CrossRef]

X. Pan, C. Wang, H. Xu, C. Wang, and X. Zhang, Appl. Phys. B 86, 693 (2007).
[CrossRef]

Appl. Phys. Lett.

F. Lagugné Labarthet, P. Rochon, and A. Natansohn, Appl. Phys. Lett. 75, 1377 (1999).
[CrossRef]

J. Appl. Phys.

H. Ono, F. Takahashi, A. Emoto, and N. Kawatsuki, J. Appl. Phys. 97, 053508 (2005).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. B

F. Lagugné Labarthet, T. Buffeteau, and C. Sourisseau, J. Phys. Chem. B 102, 2654 (1998).
[CrossRef]

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup: SF, spatial filter; L, lens; HWP, half-wave plate; PBS, polarized beam splitters; M, mirrors.

Fig. 2
Fig. 2

+ 1 order diffraction efficiencies of polarization holographic gratings generated by different intensity ratios of two orthogonally linearly polarized beams.

Fig. 3
Fig. 3

Saturated diffraction efficiency of polarization holograms generated with different intensity ratios.

Fig. 4
Fig. 4

Polarization state of an interference field gen erated by TE and TM waves, where the phase difference, δ = π x / Λ , is a function of the horizontal position x and the grating spacing Λ.

Fig. 5
Fig. 5

(a) Experimental images of the generated polarization gratings from a polarization optical microscope. (b) Observed surface relief structures of the adsorbed dyes from an atomic force microscope.

Metrics