Abstract

Despite their modest spatial resolution, uncoated tapered fiber probes are now widely used by the nano-optics community for mapping, with scanning near-field optical microscopy (SNOM), the nonradiative fields at the surface of optical and plasmonic microstructures and nanostructures. Given the significant complexity of the vectorial optical phenomena associated with subwavelength structures, the correct interpretation of SNOM acquisitions requires a complete and accurate understanding of the intrinsic image-formation procedure. In this theoretical study, we show that the SNOM imaging process with uncoated tapered fiber probes is highly polarization dependent and that the dominant effect is, surprisingly, the choice of optical fiber from which the tapered probe was fabricated. We demonstrate that although a tapered monomode fiber is unable to collect the component of the vector electric field parallel to the tip axis, a tapered multimode fiber can successfully collect all the three field components. However, we show that the signal from the longitudinal field component is collected only 10% as efficiently as the signal from the two transverse field components.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Betzig, M. Isaacson, and A. Lewis, Appl. Phys. Lett. 51, 2088 (1987).
    [CrossRef]
  2. J. Weeber, F. de Fornel, and J. Goudonnet, Opt. Commun. 126, 285 (1996).
    [CrossRef]
  3. J.-J. Greffet and R. Carminati, Prog. Surf. Sci. 56, 133 (1997).
    [CrossRef]
  4. N. Gregersen, B. Tromborg, and S. I. Bozhevolnyi, Appl. Opt. 45, 8739 (2006).
    [CrossRef] [PubMed]
  5. N. Louvion, D. Gerard, J. Mouette, F. de Fornel, C. Seassal, X. Letartre, A. Rahmani, and S. Callard, Phys. Rev. Lett. 94, 113907 (2005).
    [CrossRef] [PubMed]
  6. T. Grosjean and D. Courjon, Phys. Rev. E 67, 046611 (2003).
    [CrossRef]
  7. P. Tortora, R. Dändliker, W. Nakagawa, and L. Vaccaro, Opt. Commun. 259, 876 (2006).
    [CrossRef]
  8. A. Taflove and S. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech House, 2005).
  9. A. Gara, M. Blumrich, D. Chen, G. Chiu, P. Coteus, M. Giampapa, R. Haring, P. Heidelberger, D. Hoenicke, G. Kopcsay, T. Liebsch, M. Ohmacht, B. Steinmacher-Burow, T. Takken, and P. Vranas, IBM J. Res. Dev. 49, 195 (2005).
    [CrossRef]
  10. Thomson-CSF, L'Optique Guidée Monomode et Ses Applications (Masson, 1983), Vol. 15, pp. 663-666.
  11. J. Jackson, Classical Electrodynamics (John Wiley & Sons, 1999).
  12. R. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. Wild, Appl. Phys. Lett. 75, 160 (1999).
    [CrossRef]
  13. J. Roden and S. Gedney, Microwave Opt. Technol. Lett. 27, 334 (2000).
    [CrossRef]
  14. D. Marcuse, Light Transmission Optics (Van Nostrand Reinhold, 1972), Chap. 8, pp. 302-303.

2006 (2)

P. Tortora, R. Dändliker, W. Nakagawa, and L. Vaccaro, Opt. Commun. 259, 876 (2006).
[CrossRef]

N. Gregersen, B. Tromborg, and S. I. Bozhevolnyi, Appl. Opt. 45, 8739 (2006).
[CrossRef] [PubMed]

2005 (2)

A. Gara, M. Blumrich, D. Chen, G. Chiu, P. Coteus, M. Giampapa, R. Haring, P. Heidelberger, D. Hoenicke, G. Kopcsay, T. Liebsch, M. Ohmacht, B. Steinmacher-Burow, T. Takken, and P. Vranas, IBM J. Res. Dev. 49, 195 (2005).
[CrossRef]

N. Louvion, D. Gerard, J. Mouette, F. de Fornel, C. Seassal, X. Letartre, A. Rahmani, and S. Callard, Phys. Rev. Lett. 94, 113907 (2005).
[CrossRef] [PubMed]

2003 (1)

T. Grosjean and D. Courjon, Phys. Rev. E 67, 046611 (2003).
[CrossRef]

2000 (1)

J. Roden and S. Gedney, Microwave Opt. Technol. Lett. 27, 334 (2000).
[CrossRef]

1999 (1)

R. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. Wild, Appl. Phys. Lett. 75, 160 (1999).
[CrossRef]

1997 (1)

J.-J. Greffet and R. Carminati, Prog. Surf. Sci. 56, 133 (1997).
[CrossRef]

1996 (1)

J. Weeber, F. de Fornel, and J. Goudonnet, Opt. Commun. 126, 285 (1996).
[CrossRef]

1987 (1)

E. Betzig, M. Isaacson, and A. Lewis, Appl. Phys. Lett. 51, 2088 (1987).
[CrossRef]

Betzig, E.

E. Betzig, M. Isaacson, and A. Lewis, Appl. Phys. Lett. 51, 2088 (1987).
[CrossRef]

Blumrich, M.

A. Gara, M. Blumrich, D. Chen, G. Chiu, P. Coteus, M. Giampapa, R. Haring, P. Heidelberger, D. Hoenicke, G. Kopcsay, T. Liebsch, M. Ohmacht, B. Steinmacher-Burow, T. Takken, and P. Vranas, IBM J. Res. Dev. 49, 195 (2005).
[CrossRef]

Bozhevolnyi, S. I.

Callard, S.

N. Louvion, D. Gerard, J. Mouette, F. de Fornel, C. Seassal, X. Letartre, A. Rahmani, and S. Callard, Phys. Rev. Lett. 94, 113907 (2005).
[CrossRef] [PubMed]

Carminati, R.

J.-J. Greffet and R. Carminati, Prog. Surf. Sci. 56, 133 (1997).
[CrossRef]

Chen, D.

A. Gara, M. Blumrich, D. Chen, G. Chiu, P. Coteus, M. Giampapa, R. Haring, P. Heidelberger, D. Hoenicke, G. Kopcsay, T. Liebsch, M. Ohmacht, B. Steinmacher-Burow, T. Takken, and P. Vranas, IBM J. Res. Dev. 49, 195 (2005).
[CrossRef]

Chiu, G.

A. Gara, M. Blumrich, D. Chen, G. Chiu, P. Coteus, M. Giampapa, R. Haring, P. Heidelberger, D. Hoenicke, G. Kopcsay, T. Liebsch, M. Ohmacht, B. Steinmacher-Burow, T. Takken, and P. Vranas, IBM J. Res. Dev. 49, 195 (2005).
[CrossRef]

Coteus, P.

A. Gara, M. Blumrich, D. Chen, G. Chiu, P. Coteus, M. Giampapa, R. Haring, P. Heidelberger, D. Hoenicke, G. Kopcsay, T. Liebsch, M. Ohmacht, B. Steinmacher-Burow, T. Takken, and P. Vranas, IBM J. Res. Dev. 49, 195 (2005).
[CrossRef]

Courjon, D.

T. Grosjean and D. Courjon, Phys. Rev. E 67, 046611 (2003).
[CrossRef]

Dändliker, R.

P. Tortora, R. Dändliker, W. Nakagawa, and L. Vaccaro, Opt. Commun. 259, 876 (2006).
[CrossRef]

de Fornel, F.

N. Louvion, D. Gerard, J. Mouette, F. de Fornel, C. Seassal, X. Letartre, A. Rahmani, and S. Callard, Phys. Rev. Lett. 94, 113907 (2005).
[CrossRef] [PubMed]

J. Weeber, F. de Fornel, and J. Goudonnet, Opt. Commun. 126, 285 (1996).
[CrossRef]

Deckert, V.

R. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. Wild, Appl. Phys. Lett. 75, 160 (1999).
[CrossRef]

Fokas, C.

R. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. Wild, Appl. Phys. Lett. 75, 160 (1999).
[CrossRef]

Gara, A.

A. Gara, M. Blumrich, D. Chen, G. Chiu, P. Coteus, M. Giampapa, R. Haring, P. Heidelberger, D. Hoenicke, G. Kopcsay, T. Liebsch, M. Ohmacht, B. Steinmacher-Burow, T. Takken, and P. Vranas, IBM J. Res. Dev. 49, 195 (2005).
[CrossRef]

Gedney, S.

J. Roden and S. Gedney, Microwave Opt. Technol. Lett. 27, 334 (2000).
[CrossRef]

Gerard, D.

N. Louvion, D. Gerard, J. Mouette, F. de Fornel, C. Seassal, X. Letartre, A. Rahmani, and S. Callard, Phys. Rev. Lett. 94, 113907 (2005).
[CrossRef] [PubMed]

Giampapa, M.

A. Gara, M. Blumrich, D. Chen, G. Chiu, P. Coteus, M. Giampapa, R. Haring, P. Heidelberger, D. Hoenicke, G. Kopcsay, T. Liebsch, M. Ohmacht, B. Steinmacher-Burow, T. Takken, and P. Vranas, IBM J. Res. Dev. 49, 195 (2005).
[CrossRef]

Goudonnet, J.

J. Weeber, F. de Fornel, and J. Goudonnet, Opt. Commun. 126, 285 (1996).
[CrossRef]

Greffet, J. -J.

J.-J. Greffet and R. Carminati, Prog. Surf. Sci. 56, 133 (1997).
[CrossRef]

Gregersen, N.

Grosjean, T.

T. Grosjean and D. Courjon, Phys. Rev. E 67, 046611 (2003).
[CrossRef]

Hagness, S.

A. Taflove and S. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech House, 2005).

Haring, R.

A. Gara, M. Blumrich, D. Chen, G. Chiu, P. Coteus, M. Giampapa, R. Haring, P. Heidelberger, D. Hoenicke, G. Kopcsay, T. Liebsch, M. Ohmacht, B. Steinmacher-Burow, T. Takken, and P. Vranas, IBM J. Res. Dev. 49, 195 (2005).
[CrossRef]

Hecht, B.

R. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. Wild, Appl. Phys. Lett. 75, 160 (1999).
[CrossRef]

Heidelberger, P.

A. Gara, M. Blumrich, D. Chen, G. Chiu, P. Coteus, M. Giampapa, R. Haring, P. Heidelberger, D. Hoenicke, G. Kopcsay, T. Liebsch, M. Ohmacht, B. Steinmacher-Burow, T. Takken, and P. Vranas, IBM J. Res. Dev. 49, 195 (2005).
[CrossRef]

Hoenicke, D.

A. Gara, M. Blumrich, D. Chen, G. Chiu, P. Coteus, M. Giampapa, R. Haring, P. Heidelberger, D. Hoenicke, G. Kopcsay, T. Liebsch, M. Ohmacht, B. Steinmacher-Burow, T. Takken, and P. Vranas, IBM J. Res. Dev. 49, 195 (2005).
[CrossRef]

Isaacson, M.

E. Betzig, M. Isaacson, and A. Lewis, Appl. Phys. Lett. 51, 2088 (1987).
[CrossRef]

Jackson, J.

J. Jackson, Classical Electrodynamics (John Wiley & Sons, 1999).

Kopcsay, G.

A. Gara, M. Blumrich, D. Chen, G. Chiu, P. Coteus, M. Giampapa, R. Haring, P. Heidelberger, D. Hoenicke, G. Kopcsay, T. Liebsch, M. Ohmacht, B. Steinmacher-Burow, T. Takken, and P. Vranas, IBM J. Res. Dev. 49, 195 (2005).
[CrossRef]

Letartre, X.

N. Louvion, D. Gerard, J. Mouette, F. de Fornel, C. Seassal, X. Letartre, A. Rahmani, and S. Callard, Phys. Rev. Lett. 94, 113907 (2005).
[CrossRef] [PubMed]

Lewis, A.

E. Betzig, M. Isaacson, and A. Lewis, Appl. Phys. Lett. 51, 2088 (1987).
[CrossRef]

Liebsch, T.

A. Gara, M. Blumrich, D. Chen, G. Chiu, P. Coteus, M. Giampapa, R. Haring, P. Heidelberger, D. Hoenicke, G. Kopcsay, T. Liebsch, M. Ohmacht, B. Steinmacher-Burow, T. Takken, and P. Vranas, IBM J. Res. Dev. 49, 195 (2005).
[CrossRef]

Louvion, N.

N. Louvion, D. Gerard, J. Mouette, F. de Fornel, C. Seassal, X. Letartre, A. Rahmani, and S. Callard, Phys. Rev. Lett. 94, 113907 (2005).
[CrossRef] [PubMed]

Marcuse, D.

D. Marcuse, Light Transmission Optics (Van Nostrand Reinhold, 1972), Chap. 8, pp. 302-303.

Mouette, J.

N. Louvion, D. Gerard, J. Mouette, F. de Fornel, C. Seassal, X. Letartre, A. Rahmani, and S. Callard, Phys. Rev. Lett. 94, 113907 (2005).
[CrossRef] [PubMed]

Nakagawa, W.

P. Tortora, R. Dändliker, W. Nakagawa, and L. Vaccaro, Opt. Commun. 259, 876 (2006).
[CrossRef]

Ohmacht, M.

A. Gara, M. Blumrich, D. Chen, G. Chiu, P. Coteus, M. Giampapa, R. Haring, P. Heidelberger, D. Hoenicke, G. Kopcsay, T. Liebsch, M. Ohmacht, B. Steinmacher-Burow, T. Takken, and P. Vranas, IBM J. Res. Dev. 49, 195 (2005).
[CrossRef]

Rahmani, A.

N. Louvion, D. Gerard, J. Mouette, F. de Fornel, C. Seassal, X. Letartre, A. Rahmani, and S. Callard, Phys. Rev. Lett. 94, 113907 (2005).
[CrossRef] [PubMed]

Roden, J.

J. Roden and S. Gedney, Microwave Opt. Technol. Lett. 27, 334 (2000).
[CrossRef]

Seassal, C.

N. Louvion, D. Gerard, J. Mouette, F. de Fornel, C. Seassal, X. Letartre, A. Rahmani, and S. Callard, Phys. Rev. Lett. 94, 113907 (2005).
[CrossRef] [PubMed]

Sick, B.

R. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. Wild, Appl. Phys. Lett. 75, 160 (1999).
[CrossRef]

Steinmacher-Burow, B.

A. Gara, M. Blumrich, D. Chen, G. Chiu, P. Coteus, M. Giampapa, R. Haring, P. Heidelberger, D. Hoenicke, G. Kopcsay, T. Liebsch, M. Ohmacht, B. Steinmacher-Burow, T. Takken, and P. Vranas, IBM J. Res. Dev. 49, 195 (2005).
[CrossRef]

Stöckle, R.

R. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. Wild, Appl. Phys. Lett. 75, 160 (1999).
[CrossRef]

Taflove, A.

A. Taflove and S. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech House, 2005).

Takken, T.

A. Gara, M. Blumrich, D. Chen, G. Chiu, P. Coteus, M. Giampapa, R. Haring, P. Heidelberger, D. Hoenicke, G. Kopcsay, T. Liebsch, M. Ohmacht, B. Steinmacher-Burow, T. Takken, and P. Vranas, IBM J. Res. Dev. 49, 195 (2005).
[CrossRef]

Tortora, P.

P. Tortora, R. Dändliker, W. Nakagawa, and L. Vaccaro, Opt. Commun. 259, 876 (2006).
[CrossRef]

Tromborg, B.

Vaccaro, L.

P. Tortora, R. Dändliker, W. Nakagawa, and L. Vaccaro, Opt. Commun. 259, 876 (2006).
[CrossRef]

Vranas, P.

A. Gara, M. Blumrich, D. Chen, G. Chiu, P. Coteus, M. Giampapa, R. Haring, P. Heidelberger, D. Hoenicke, G. Kopcsay, T. Liebsch, M. Ohmacht, B. Steinmacher-Burow, T. Takken, and P. Vranas, IBM J. Res. Dev. 49, 195 (2005).
[CrossRef]

Weeber, J.

J. Weeber, F. de Fornel, and J. Goudonnet, Opt. Commun. 126, 285 (1996).
[CrossRef]

Wild, U.

R. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. Wild, Appl. Phys. Lett. 75, 160 (1999).
[CrossRef]

Zenobi, R.

R. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. Wild, Appl. Phys. Lett. 75, 160 (1999).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

E. Betzig, M. Isaacson, and A. Lewis, Appl. Phys. Lett. 51, 2088 (1987).
[CrossRef]

R. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. Wild, Appl. Phys. Lett. 75, 160 (1999).
[CrossRef]

IBM J. Res. Dev. (1)

A. Gara, M. Blumrich, D. Chen, G. Chiu, P. Coteus, M. Giampapa, R. Haring, P. Heidelberger, D. Hoenicke, G. Kopcsay, T. Liebsch, M. Ohmacht, B. Steinmacher-Burow, T. Takken, and P. Vranas, IBM J. Res. Dev. 49, 195 (2005).
[CrossRef]

Microwave Opt. Technol. Lett. (1)

J. Roden and S. Gedney, Microwave Opt. Technol. Lett. 27, 334 (2000).
[CrossRef]

Opt. Commun. (2)

P. Tortora, R. Dändliker, W. Nakagawa, and L. Vaccaro, Opt. Commun. 259, 876 (2006).
[CrossRef]

J. Weeber, F. de Fornel, and J. Goudonnet, Opt. Commun. 126, 285 (1996).
[CrossRef]

Phys. Rev. E (1)

T. Grosjean and D. Courjon, Phys. Rev. E 67, 046611 (2003).
[CrossRef]

Phys. Rev. Lett. (1)

N. Louvion, D. Gerard, J. Mouette, F. de Fornel, C. Seassal, X. Letartre, A. Rahmani, and S. Callard, Phys. Rev. Lett. 94, 113907 (2005).
[CrossRef] [PubMed]

Prog. Surf. Sci. (1)

J.-J. Greffet and R. Carminati, Prog. Surf. Sci. 56, 133 (1997).
[CrossRef]

Other (4)

A. Taflove and S. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech House, 2005).

D. Marcuse, Light Transmission Optics (Van Nostrand Reinhold, 1972), Chap. 8, pp. 302-303.

Thomson-CSF, L'Optique Guidée Monomode et Ses Applications (Masson, 1983), Vol. 15, pp. 663-666.

J. Jackson, Classical Electrodynamics (John Wiley & Sons, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Light collection into a four-mode tapered optical fiber with a dipolar excitation. (a) Scheme of the theoretical configuration. (b) and (c) Electric field amplitude (to the power 0.4) in the (b) ( X Z ) and (c) ( Y Z ) planes with a transverse dipole excitation along X. (d) Electric field amplitude (to the power 0.4) in the ( X Z ) plane with a longitudinal dipole excitation.

Tables (1)

Tables Icon

Table 1 Normalized Mode-Coupling Coefficients C m between the Power Reaching the Core due to a Dipole at the Tip (Oriented along Either x ̂ , y ̂ , or z ̂ ) and the Four Modes Supported by the Few-Mode Fiber

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P i = 1 2 R e r d r d θ ( E i × H i ) e z ,
P m = 1 2 R e r d r d θ ( a m E m × b m H m ) e z .
a m = r d r d θ ( E i × H m ) e z r d r d θ ( E m × H m ) e z ,
b m = r d r d θ ( E m × H i ) e z r d r d θ ( E m × H m ) e z .

Metrics