Abstract

In silicon devices, the spectral bandwidth of coherent anti-Stokes Raman scattering (CARS) is limited by the narrowband nature of the Raman process in this medium. In this Letter, we report the observation of broadband wavelength conversion in silicon through CARS enhanced by the self-phase-modulation-induced spectral broadening of the optical pump. The CARS conversion over a bandwidth substantially greater than the intrinsic Raman linewidth is demonstrated yielding conversion efficiencies as high as 1%. Numerical simulations are performed to explain the spectral features observed in the spectrum of the anti-Stokes signal.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Tang, P. S. Spencer, and K. A. Shore, Appl. Phys. Lett. 75, 2710 (1999).
    [CrossRef]
  2. T. Sylvestre, A. Kudlinski, A. Mussot, J. F. Gleyze, A. Jolly, and H. Maillotte, Appl. Phys. Lett. 94, 111104 (2009).
    [CrossRef]
  3. R. Espinola, J. Dadap, R. Osgood, Jr., S. McNab, and Y. Vlasov, Opt. Express 13, 4341 (2005).
    [CrossRef] [PubMed]
  4. V. Raghunathan, R. Claps, D. Dimitropoulos, and B. Jalali, Appl. Phys. Lett. 85, 34 (2004).
    [CrossRef]
  5. P. Koonath, D. R. Solli, and B. Jalali, in Conference on Lasers and Electro-Optics (Optical Society of America, 2008), paper CThE3.
  6. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, Nature 441, 960 (2006).
    [CrossRef] [PubMed]
  7. P. Koonath, D. R. Solli, and B. Jalali, Appl. Phys. Lett. 93, 091114 (2008).
    [CrossRef]
  8. D. R. Solli, P. Koonath, and B. Jalali, Appl. Phys. Lett. 93, 191105 (2008).
    [CrossRef]
  9. Q. Lin, O. J. Painter, and G. P. Agrawal, Opt. Express 15, 16604 (2007).
    [CrossRef] [PubMed]

2009 (1)

T. Sylvestre, A. Kudlinski, A. Mussot, J. F. Gleyze, A. Jolly, and H. Maillotte, Appl. Phys. Lett. 94, 111104 (2009).
[CrossRef]

2008 (2)

P. Koonath, D. R. Solli, and B. Jalali, Appl. Phys. Lett. 93, 091114 (2008).
[CrossRef]

D. R. Solli, P. Koonath, and B. Jalali, Appl. Phys. Lett. 93, 191105 (2008).
[CrossRef]

2007 (1)

2006 (1)

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, Nature 441, 960 (2006).
[CrossRef] [PubMed]

2005 (1)

2004 (1)

V. Raghunathan, R. Claps, D. Dimitropoulos, and B. Jalali, Appl. Phys. Lett. 85, 34 (2004).
[CrossRef]

1999 (1)

J. M. Tang, P. S. Spencer, and K. A. Shore, Appl. Phys. Lett. 75, 2710 (1999).
[CrossRef]

Agrawal, G. P.

Claps, R.

V. Raghunathan, R. Claps, D. Dimitropoulos, and B. Jalali, Appl. Phys. Lett. 85, 34 (2004).
[CrossRef]

Dadap, J.

Dimitropoulos, D.

V. Raghunathan, R. Claps, D. Dimitropoulos, and B. Jalali, Appl. Phys. Lett. 85, 34 (2004).
[CrossRef]

Espinola, R.

Foster, M. A.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, Nature 441, 960 (2006).
[CrossRef] [PubMed]

Gaeta, A. L.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, Nature 441, 960 (2006).
[CrossRef] [PubMed]

Gleyze, J. F.

T. Sylvestre, A. Kudlinski, A. Mussot, J. F. Gleyze, A. Jolly, and H. Maillotte, Appl. Phys. Lett. 94, 111104 (2009).
[CrossRef]

Jalali, B.

D. R. Solli, P. Koonath, and B. Jalali, Appl. Phys. Lett. 93, 191105 (2008).
[CrossRef]

P. Koonath, D. R. Solli, and B. Jalali, Appl. Phys. Lett. 93, 091114 (2008).
[CrossRef]

V. Raghunathan, R. Claps, D. Dimitropoulos, and B. Jalali, Appl. Phys. Lett. 85, 34 (2004).
[CrossRef]

P. Koonath, D. R. Solli, and B. Jalali, in Conference on Lasers and Electro-Optics (Optical Society of America, 2008), paper CThE3.

Jolly, A.

T. Sylvestre, A. Kudlinski, A. Mussot, J. F. Gleyze, A. Jolly, and H. Maillotte, Appl. Phys. Lett. 94, 111104 (2009).
[CrossRef]

Koonath, P.

D. R. Solli, P. Koonath, and B. Jalali, Appl. Phys. Lett. 93, 191105 (2008).
[CrossRef]

P. Koonath, D. R. Solli, and B. Jalali, Appl. Phys. Lett. 93, 091114 (2008).
[CrossRef]

P. Koonath, D. R. Solli, and B. Jalali, in Conference on Lasers and Electro-Optics (Optical Society of America, 2008), paper CThE3.

Kudlinski, A.

T. Sylvestre, A. Kudlinski, A. Mussot, J. F. Gleyze, A. Jolly, and H. Maillotte, Appl. Phys. Lett. 94, 111104 (2009).
[CrossRef]

Lin, Q.

Lipson, M.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, Nature 441, 960 (2006).
[CrossRef] [PubMed]

Maillotte, H.

T. Sylvestre, A. Kudlinski, A. Mussot, J. F. Gleyze, A. Jolly, and H. Maillotte, Appl. Phys. Lett. 94, 111104 (2009).
[CrossRef]

McNab, S.

Mussot, A.

T. Sylvestre, A. Kudlinski, A. Mussot, J. F. Gleyze, A. Jolly, and H. Maillotte, Appl. Phys. Lett. 94, 111104 (2009).
[CrossRef]

Osgood, R.

Painter, O. J.

Raghunathan, V.

V. Raghunathan, R. Claps, D. Dimitropoulos, and B. Jalali, Appl. Phys. Lett. 85, 34 (2004).
[CrossRef]

Schmidt, B. S.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, Nature 441, 960 (2006).
[CrossRef] [PubMed]

Sharping, J. E.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, Nature 441, 960 (2006).
[CrossRef] [PubMed]

Shore, K. A.

J. M. Tang, P. S. Spencer, and K. A. Shore, Appl. Phys. Lett. 75, 2710 (1999).
[CrossRef]

Solli, D. R.

P. Koonath, D. R. Solli, and B. Jalali, Appl. Phys. Lett. 93, 091114 (2008).
[CrossRef]

D. R. Solli, P. Koonath, and B. Jalali, Appl. Phys. Lett. 93, 191105 (2008).
[CrossRef]

P. Koonath, D. R. Solli, and B. Jalali, in Conference on Lasers and Electro-Optics (Optical Society of America, 2008), paper CThE3.

Spencer, P. S.

J. M. Tang, P. S. Spencer, and K. A. Shore, Appl. Phys. Lett. 75, 2710 (1999).
[CrossRef]

Sylvestre, T.

T. Sylvestre, A. Kudlinski, A. Mussot, J. F. Gleyze, A. Jolly, and H. Maillotte, Appl. Phys. Lett. 94, 111104 (2009).
[CrossRef]

Tang, J. M.

J. M. Tang, P. S. Spencer, and K. A. Shore, Appl. Phys. Lett. 75, 2710 (1999).
[CrossRef]

Turner, A. C.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, Nature 441, 960 (2006).
[CrossRef] [PubMed]

Vlasov, Y.

Appl. Phys. Lett. (5)

P. Koonath, D. R. Solli, and B. Jalali, Appl. Phys. Lett. 93, 091114 (2008).
[CrossRef]

D. R. Solli, P. Koonath, and B. Jalali, Appl. Phys. Lett. 93, 191105 (2008).
[CrossRef]

J. M. Tang, P. S. Spencer, and K. A. Shore, Appl. Phys. Lett. 75, 2710 (1999).
[CrossRef]

T. Sylvestre, A. Kudlinski, A. Mussot, J. F. Gleyze, A. Jolly, and H. Maillotte, Appl. Phys. Lett. 94, 111104 (2009).
[CrossRef]

V. Raghunathan, R. Claps, D. Dimitropoulos, and B. Jalali, Appl. Phys. Lett. 85, 34 (2004).
[CrossRef]

Nature (1)

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, Nature 441, 960 (2006).
[CrossRef] [PubMed]

Opt. Express (2)

Other (1)

P. Koonath, D. R. Solli, and B. Jalali, in Conference on Lasers and Electro-Optics (Optical Society of America, 2008), paper CThE3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic depiction of wavelength conversion through CARS silicon.

Fig. 2
Fig. 2

Measured spectrum of broadband CARS conversion in silicon. The 3 dB bandwidth of the Raman process for a pump wavelength at 1550 nm is delineated by vertical dotted lines for the purpose of comparison.

Fig. 3
Fig. 3

(a) Measured spectrum of the Raman gain at the Stokes wavelength, (b) the optical pump at 1550 nm. The dotted curve in (b) delineates the spectrum of the input pump signal. The broadening and the blueshift are noticeable in both the pump as well as the Raman gain.

Fig. 4
Fig. 4

Simulated spectra of (a) anti-Stokes signal and (b) Stokes signal. These spectra correspond to a delay of 10 ps between the pump and the broadband Stokes signal with the Stokes signal timed at the leading edge of the pump.

Fig. 5
Fig. 5

Simulated anti-Stokes signal for different values of delay between the pump and the broadband input Stokes pulses.

Fig. 6
Fig. 6

Impact of free-carrier nonlinearities obtained through simulations on (a) the temporal profile of the pump pulse and (b) the chirp of the pump pulse. The relatively minor influence of the Kerr effect on chirp is seen at the leading edge of the pulse in (b). (b) is corrected for the chirp of the pump pulse at the input.

Metrics