Abstract

We report on femtosecond laser writing of channel waveguides in Nd3+ ion doped YAG ceramics by multiple inscriptions of damage filaments. Waveguiding between filaments was found to resist annealing temperatures as high as 1500°C. Microluminescence imaging experiments have been carried out to elucidate the potential application of the obtained waveguides as integrated laser sources as well as to elucidate the waveguiding mechanisms.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ikesue and Y. L. Aung, J. Am. Ceram. Soc. 89, 1936 (2006).
    [CrossRef]
  2. A. A. Kaminskii, Laser Photonics Rev. 1, 87 (2007).
    [CrossRef]
  3. J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, and T. Yanagitani, Appl. Phys. B 71, 469 (2000).
    [CrossRef]
  4. F. Chen, Y. Tang, and D. Jaque, Opt. Lett. 34, 28 (2009).
    [CrossRef]
  5. S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, Appl. Phys. A 77, 109 (2003).
    [CrossRef]
  6. A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, Appl. Phys. B 95, 85 (2009).
    [CrossRef]
  7. G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, Appl. Phys. Lett. 92, 111103 (2008).
    [CrossRef]
  8. N. Pavel, V. Lupei, J. Saikawa, T. Taira, and H. Kan, Appl. Phys. B 82, 599 (2006).
    [CrossRef]
  9. A. A. Kaminskii, Laser Crystals (Springer, 1981).
  10. B. Henderson and G. F. Imbusch, Optical Spectroscopy of Inorganic Solids (Oxford Science, 1989).
  11. S. Kobyakov, A. Kamińska, A. Suchocki, D. Galanciak, and M. Malinowski, Appl. Phys. Lett. 88, 234102 (2006).
    [CrossRef]

2009 (2)

F. Chen, Y. Tang, and D. Jaque, Opt. Lett. 34, 28 (2009).
[CrossRef]

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, Appl. Phys. B 95, 85 (2009).
[CrossRef]

2008 (1)

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, Appl. Phys. Lett. 92, 111103 (2008).
[CrossRef]

2007 (1)

A. A. Kaminskii, Laser Photonics Rev. 1, 87 (2007).
[CrossRef]

2006 (3)

N. Pavel, V. Lupei, J. Saikawa, T. Taira, and H. Kan, Appl. Phys. B 82, 599 (2006).
[CrossRef]

S. Kobyakov, A. Kamińska, A. Suchocki, D. Galanciak, and M. Malinowski, Appl. Phys. Lett. 88, 234102 (2006).
[CrossRef]

A. Ikesue and Y. L. Aung, J. Am. Ceram. Soc. 89, 1936 (2006).
[CrossRef]

2003 (1)

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, Appl. Phys. A 77, 109 (2003).
[CrossRef]

2000 (1)

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, and T. Yanagitani, Appl. Phys. B 71, 469 (2000).
[CrossRef]

Aung, Y. L.

A. Ikesue and Y. L. Aung, J. Am. Ceram. Soc. 89, 1936 (2006).
[CrossRef]

Benayas, A.

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, Appl. Phys. Lett. 92, 111103 (2008).
[CrossRef]

Burghoff, J.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, Appl. Phys. A 77, 109 (2003).
[CrossRef]

Cantelar, E.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, Appl. Phys. B 95, 85 (2009).
[CrossRef]

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, Appl. Phys. Lett. 92, 111103 (2008).
[CrossRef]

Chen, F.

Galanciak, D.

S. Kobyakov, A. Kamińska, A. Suchocki, D. Galanciak, and M. Malinowski, Appl. Phys. Lett. 88, 234102 (2006).
[CrossRef]

Henderson, B.

B. Henderson and G. F. Imbusch, Optical Spectroscopy of Inorganic Solids (Oxford Science, 1989).

Ikesue, A.

A. Ikesue and Y. L. Aung, J. Am. Ceram. Soc. 89, 1936 (2006).
[CrossRef]

Imbusch, G. F.

B. Henderson and G. F. Imbusch, Optical Spectroscopy of Inorganic Solids (Oxford Science, 1989).

Jaque, D.

F. Chen, Y. Tang, and D. Jaque, Opt. Lett. 34, 28 (2009).
[CrossRef]

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, Appl. Phys. B 95, 85 (2009).
[CrossRef]

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, Appl. Phys. Lett. 92, 111103 (2008).
[CrossRef]

Jaque, F.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, Appl. Phys. B 95, 85 (2009).
[CrossRef]

Kaminska, A.

S. Kobyakov, A. Kamińska, A. Suchocki, D. Galanciak, and M. Malinowski, Appl. Phys. Lett. 88, 234102 (2006).
[CrossRef]

Kaminskii, A. A.

A. A. Kaminskii, Laser Photonics Rev. 1, 87 (2007).
[CrossRef]

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, and T. Yanagitani, Appl. Phys. B 71, 469 (2000).
[CrossRef]

A. A. Kaminskii, Laser Crystals (Springer, 1981).

Kan, H.

N. Pavel, V. Lupei, J. Saikawa, T. Taira, and H. Kan, Appl. Phys. B 82, 599 (2006).
[CrossRef]

Kobyakov, S.

S. Kobyakov, A. Kamińska, A. Suchocki, D. Galanciak, and M. Malinowski, Appl. Phys. Lett. 88, 234102 (2006).
[CrossRef]

Lamela, J.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, Appl. Phys. B 95, 85 (2009).
[CrossRef]

Li, C.

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, and T. Yanagitani, Appl. Phys. B 71, 469 (2000).
[CrossRef]

Lifante, G.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, Appl. Phys. B 95, 85 (2009).
[CrossRef]

Lu, J.

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, and T. Yanagitani, Appl. Phys. B 71, 469 (2000).
[CrossRef]

Lupei, V.

N. Pavel, V. Lupei, J. Saikawa, T. Taira, and H. Kan, Appl. Phys. B 82, 599 (2006).
[CrossRef]

Malinowski, M.

S. Kobyakov, A. Kamińska, A. Suchocki, D. Galanciak, and M. Malinowski, Appl. Phys. Lett. 88, 234102 (2006).
[CrossRef]

Nolte, S.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, Appl. Phys. A 77, 109 (2003).
[CrossRef]

Pavel, N.

N. Pavel, V. Lupei, J. Saikawa, T. Taira, and H. Kan, Appl. Phys. B 82, 599 (2006).
[CrossRef]

Prabhu, M.

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, and T. Yanagitani, Appl. Phys. B 71, 469 (2000).
[CrossRef]

Rodenas, A.

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, Appl. Phys. Lett. 92, 111103 (2008).
[CrossRef]

Ródenas, A.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, Appl. Phys. B 95, 85 (2009).
[CrossRef]

Roso, L.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, Appl. Phys. B 95, 85 (2009).
[CrossRef]

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, Appl. Phys. Lett. 92, 111103 (2008).
[CrossRef]

Saikawa, J.

N. Pavel, V. Lupei, J. Saikawa, T. Taira, and H. Kan, Appl. Phys. B 82, 599 (2006).
[CrossRef]

Song, J.

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, and T. Yanagitani, Appl. Phys. B 71, 469 (2000).
[CrossRef]

Suchocki, A.

S. Kobyakov, A. Kamińska, A. Suchocki, D. Galanciak, and M. Malinowski, Appl. Phys. Lett. 88, 234102 (2006).
[CrossRef]

Taira, T.

N. Pavel, V. Lupei, J. Saikawa, T. Taira, and H. Kan, Appl. Phys. B 82, 599 (2006).
[CrossRef]

Tang, Y.

Torchia, G. A.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, Appl. Phys. B 95, 85 (2009).
[CrossRef]

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, Appl. Phys. Lett. 92, 111103 (2008).
[CrossRef]

Tuennermann, A.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, Appl. Phys. A 77, 109 (2003).
[CrossRef]

Ueda, K.

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, and T. Yanagitani, Appl. Phys. B 71, 469 (2000).
[CrossRef]

Will, M.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, Appl. Phys. A 77, 109 (2003).
[CrossRef]

Xu, J.

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, and T. Yanagitani, Appl. Phys. B 71, 469 (2000).
[CrossRef]

Yagi, H.

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, and T. Yanagitani, Appl. Phys. B 71, 469 (2000).
[CrossRef]

Yanagitani, T.

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, and T. Yanagitani, Appl. Phys. B 71, 469 (2000).
[CrossRef]

Appl. Phys. A (1)

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, Appl. Phys. A 77, 109 (2003).
[CrossRef]

Appl. Phys. B (3)

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, Appl. Phys. B 95, 85 (2009).
[CrossRef]

N. Pavel, V. Lupei, J. Saikawa, T. Taira, and H. Kan, Appl. Phys. B 82, 599 (2006).
[CrossRef]

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, and T. Yanagitani, Appl. Phys. B 71, 469 (2000).
[CrossRef]

Appl. Phys. Lett. (2)

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, Appl. Phys. Lett. 92, 111103 (2008).
[CrossRef]

S. Kobyakov, A. Kamińska, A. Suchocki, D. Galanciak, and M. Malinowski, Appl. Phys. Lett. 88, 234102 (2006).
[CrossRef]

J. Am. Ceram. Soc. (1)

A. Ikesue and Y. L. Aung, J. Am. Ceram. Soc. 89, 1936 (2006).
[CrossRef]

Laser Photonics Rev. (1)

A. A. Kaminskii, Laser Photonics Rev. 1, 87 (2007).
[CrossRef]

Opt. Lett. (1)

Other (2)

A. A. Kaminskii, Laser Crystals (Springer, 1981).

B. Henderson and G. F. Imbusch, Optical Spectroscopy of Inorganic Solids (Oxford Science, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Optical transmission micrograph of a Nd:cYAG multifilament waveguide with a filament–filament distance of 30 μ m . (b) Near-field intensity distribution of the fundamental mode at 632.8 nm corresponding to the structure shown in (a). (c) SNOM transmission image of the multifilament waveguide shown in (a). (d) Near-field intensity distribution of the fundamental mode at 632.8 nm corresponding to a waveguide with a filament–filament distance of 15 μ m . In all the cases the white dashed lines indicate the position of the filaments. Scale bar is, in all the cases, 20 μ m .

Fig. 2
Fig. 2

(a) Emission spectrum corresponding to the Nd 3 + F 3 2 4 ( R 1 ) I 9 2 4 ( Z 5 ) laser transition as obtained from a unprocessed area, from the waveguide and from a filament. (b), (c), and (d) are the spatial dependences of the luminescence intensity, induced spectral shift, and induced spectral broadening of the F 3 2 4 ( R 1 ) I 9 2 4 ( Z 5 ) Nd 3 + emission line in the as-fabricated waveguide, respectively. Scale bar is, in all the cases, 20 μ m .

Fig. 3
Fig. 3

(a) Variation of the aspect ratio of the waveguide’s mode (defined as the ratio between vertical and horizontal mode extensions) for the different annealing temperatures as obtained for double-line and quadruple-line waveguides (solid and open circles, respectively). The insets are the waveguide’s modes for each case as obtained from the as-fabricated structures and after 1500 ° C annealing. Dashed lines indicate the location of filaments. (b), (c), and (d) are the spatial dependence of the luminescence intensity, induced spectral shift, and induced spectral broadening of the F 3 2 4 ( R 1 ) I 9 2 4 ( Z 5 ) Nd 3 + emission line as obtained from a quadruple-line waveguide after thermal annealing at 1500 ° C for 4 h, respectively. The filament–filament separation is 30 μ m , and the scale bar is, in all the cases, 20 μ m .

Metrics