Abstract

We introduce a plasmonic waveguide system, which supports a subwavelength broadband slow-light guided mode with a tunable slowdown factor at a given wavelength. The system consists of a metal–dielectric–metal (MDM) waveguide side-coupled to a periodic array of MDM stub resonators. The slowdown factor at a given wavelength can be tuned by adjusting the geometrical parameters of the system. In addition, there is a trade-off between the slowdown factor and the propagation length of the supported optical mode. Finally, we show that light can be coupled efficiently from a conventional MDM waveguide to the plasmonic waveguide system.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
    [CrossRef] [PubMed]
  2. E. Ozbay, Science 311, 189 (2006).
    [CrossRef] [PubMed]
  3. A. Karalis, E. Lidorikis, M. Ibanescu, J. Joannopoulos, and M. Soljacic, Phys. Rev. Lett. 95, 063901 (2005).
    [CrossRef] [PubMed]
  4. M. Sandtke and L. Kuipers, Nat. Photon. 1, 573 (2007).
    [CrossRef]
  5. Z. Kang, W. Lin, and G. P. Wang, J. Opt. Soc. Am. B 26, 1944 (2009).
    [CrossRef]
  6. Q. Gan, Y. J. Ding, and F. J. Bartoli, Phys. Rev. Lett. 102, 056801 (2009).
    [CrossRef] [PubMed]
  7. A. Kocabas, S. S. Senlik, and A. Aydinli, Phys. Rev. Lett. 102, 063901 (2009).
    [CrossRef] [PubMed]
  8. E. Feigenbaum and M. Orenstein, Opt. Express 17, 2465 (2009).
    [CrossRef] [PubMed]
  9. D. K. Gramotnev and S. I. Bozhevolnyi, Nat. Photon. 4, 83 (2010).
    [CrossRef]
  10. D. M. Pozar, Microwave Engineering (Wiley, 1998).
  11. E. N. Economou, Phys. Rev. 182, 539 (1969).
    [CrossRef]
  12. Y. Matsuzaki, T. Okamoto, M. Haraguchi, M. Fukui, and M. Nakagaki, Opt. Express 16, 16314 (2008).
    [CrossRef] [PubMed]
  13. X. S. Lin and X. G. Huang, Opt. Lett. 33, 2874 (2008).
    [CrossRef] [PubMed]
  14. J. Liu, G. Fang, H. Zhao, Y. Zhang, and S. Liu, Opt. Express 17, 20134 (2009).
    [CrossRef] [PubMed]
  15. C. Min and G. Veronis, Opt. Express 17, 10757 (2009).
    [CrossRef] [PubMed]
  16. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  17. S. D. Wu and E. N. Glytsis, J. Opt. Soc. Am. A 19, 2018 (2002).
    [CrossRef]
  18. E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).
  19. J. Jin, The Finite Element Method in Electromagnetics(Wiley, 2002).
  20. M. Koshiba, Y. Tsuji, and S. Sasaki, IEEE Microw. Wirel. Compon. Lett. 11, 152 (2001).
    [CrossRef]
  21. G. Veronis and S. Fan, Appl. Phys. Lett. 87, 131102 (2005).
    [CrossRef]
  22. S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, IEEE J. Sel. Top. Quantum Electron. 14, 1462 (2008).
    [CrossRef]

2010 (1)

D. K. Gramotnev and S. I. Bozhevolnyi, Nat. Photon. 4, 83 (2010).
[CrossRef]

2009 (6)

2008 (3)

2007 (1)

M. Sandtke and L. Kuipers, Nat. Photon. 1, 573 (2007).
[CrossRef]

2006 (1)

E. Ozbay, Science 311, 189 (2006).
[CrossRef] [PubMed]

2005 (2)

A. Karalis, E. Lidorikis, M. Ibanescu, J. Joannopoulos, and M. Soljacic, Phys. Rev. Lett. 95, 063901 (2005).
[CrossRef] [PubMed]

G. Veronis and S. Fan, Appl. Phys. Lett. 87, 131102 (2005).
[CrossRef]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
[CrossRef] [PubMed]

2002 (1)

2001 (1)

M. Koshiba, Y. Tsuji, and S. Sasaki, IEEE Microw. Wirel. Compon. Lett. 11, 152 (2001).
[CrossRef]

1969 (1)

E. N. Economou, Phys. Rev. 182, 539 (1969).
[CrossRef]

Aydinli, A.

A. Kocabas, S. S. Senlik, and A. Aydinli, Phys. Rev. Lett. 102, 063901 (2009).
[CrossRef] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
[CrossRef] [PubMed]

Bartoli, F. J.

Q. Gan, Y. J. Ding, and F. J. Bartoli, Phys. Rev. Lett. 102, 056801 (2009).
[CrossRef] [PubMed]

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, Nat. Photon. 4, 83 (2010).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
[CrossRef] [PubMed]

Ding, Y. J.

Q. Gan, Y. J. Ding, and F. J. Bartoli, Phys. Rev. Lett. 102, 056801 (2009).
[CrossRef] [PubMed]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
[CrossRef] [PubMed]

Economou, E. N.

E. N. Economou, Phys. Rev. 182, 539 (1969).
[CrossRef]

Fan, S.

S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, IEEE J. Sel. Top. Quantum Electron. 14, 1462 (2008).
[CrossRef]

G. Veronis and S. Fan, Appl. Phys. Lett. 87, 131102 (2005).
[CrossRef]

Fang, G.

Feigenbaum, E.

Fukui, M.

Gan, Q.

Q. Gan, Y. J. Ding, and F. J. Bartoli, Phys. Rev. Lett. 102, 056801 (2009).
[CrossRef] [PubMed]

Glytsis, E. N.

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, Nat. Photon. 4, 83 (2010).
[CrossRef]

Haraguchi, M.

Huang, X. G.

Ibanescu, M.

A. Karalis, E. Lidorikis, M. Ibanescu, J. Joannopoulos, and M. Soljacic, Phys. Rev. Lett. 95, 063901 (2005).
[CrossRef] [PubMed]

Jin, J.

J. Jin, The Finite Element Method in Electromagnetics(Wiley, 2002).

Joannopoulos, J.

A. Karalis, E. Lidorikis, M. Ibanescu, J. Joannopoulos, and M. Soljacic, Phys. Rev. Lett. 95, 063901 (2005).
[CrossRef] [PubMed]

Kang, Z.

Karalis, A.

A. Karalis, E. Lidorikis, M. Ibanescu, J. Joannopoulos, and M. Soljacic, Phys. Rev. Lett. 95, 063901 (2005).
[CrossRef] [PubMed]

Kocabas, A.

A. Kocabas, S. S. Senlik, and A. Aydinli, Phys. Rev. Lett. 102, 063901 (2009).
[CrossRef] [PubMed]

Kocabas, S. E.

S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, IEEE J. Sel. Top. Quantum Electron. 14, 1462 (2008).
[CrossRef]

Koshiba, M.

M. Koshiba, Y. Tsuji, and S. Sasaki, IEEE Microw. Wirel. Compon. Lett. 11, 152 (2001).
[CrossRef]

Kuipers, L.

M. Sandtke and L. Kuipers, Nat. Photon. 1, 573 (2007).
[CrossRef]

Lidorikis, E.

A. Karalis, E. Lidorikis, M. Ibanescu, J. Joannopoulos, and M. Soljacic, Phys. Rev. Lett. 95, 063901 (2005).
[CrossRef] [PubMed]

Lin, W.

Lin, X. S.

Liu, J.

Liu, S.

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Matsuzaki, Y.

Miller, D. A. B.

S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, IEEE J. Sel. Top. Quantum Electron. 14, 1462 (2008).
[CrossRef]

Min, C.

Nakagaki, M.

Okamoto, T.

Orenstein, M.

Ozbay, E.

E. Ozbay, Science 311, 189 (2006).
[CrossRef] [PubMed]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).

Pozar, D. M.

D. M. Pozar, Microwave Engineering (Wiley, 1998).

Sandtke, M.

M. Sandtke and L. Kuipers, Nat. Photon. 1, 573 (2007).
[CrossRef]

Sasaki, S.

M. Koshiba, Y. Tsuji, and S. Sasaki, IEEE Microw. Wirel. Compon. Lett. 11, 152 (2001).
[CrossRef]

Senlik, S. S.

A. Kocabas, S. S. Senlik, and A. Aydinli, Phys. Rev. Lett. 102, 063901 (2009).
[CrossRef] [PubMed]

Soljacic, M.

A. Karalis, E. Lidorikis, M. Ibanescu, J. Joannopoulos, and M. Soljacic, Phys. Rev. Lett. 95, 063901 (2005).
[CrossRef] [PubMed]

Tsuji, Y.

M. Koshiba, Y. Tsuji, and S. Sasaki, IEEE Microw. Wirel. Compon. Lett. 11, 152 (2001).
[CrossRef]

Veronis, G.

C. Min and G. Veronis, Opt. Express 17, 10757 (2009).
[CrossRef] [PubMed]

S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, IEEE J. Sel. Top. Quantum Electron. 14, 1462 (2008).
[CrossRef]

G. Veronis and S. Fan, Appl. Phys. Lett. 87, 131102 (2005).
[CrossRef]

Wang, G. P.

Wu, S. D.

Zhang, Y.

Zhao, H.

Appl. Phys. Lett. (1)

G. Veronis and S. Fan, Appl. Phys. Lett. 87, 131102 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, IEEE J. Sel. Top. Quantum Electron. 14, 1462 (2008).
[CrossRef]

IEEE Microw. Wirel. Compon. Lett. (1)

M. Koshiba, Y. Tsuji, and S. Sasaki, IEEE Microw. Wirel. Compon. Lett. 11, 152 (2001).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Nat. Photon. (2)

D. K. Gramotnev and S. I. Bozhevolnyi, Nat. Photon. 4, 83 (2010).
[CrossRef]

M. Sandtke and L. Kuipers, Nat. Photon. 1, 573 (2007).
[CrossRef]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. (1)

E. N. Economou, Phys. Rev. 182, 539 (1969).
[CrossRef]

Phys. Rev. Lett. (3)

A. Karalis, E. Lidorikis, M. Ibanescu, J. Joannopoulos, and M. Soljacic, Phys. Rev. Lett. 95, 063901 (2005).
[CrossRef] [PubMed]

Q. Gan, Y. J. Ding, and F. J. Bartoli, Phys. Rev. Lett. 102, 056801 (2009).
[CrossRef] [PubMed]

A. Kocabas, S. S. Senlik, and A. Aydinli, Phys. Rev. Lett. 102, 063901 (2009).
[CrossRef] [PubMed]

Science (1)

E. Ozbay, Science 311, 189 (2006).
[CrossRef] [PubMed]

Other (4)

D. M. Pozar, Microwave Engineering (Wiley, 1998).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).

J. Jin, The Finite Element Method in Electromagnetics(Wiley, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic of a plasmonic waveguide system consisting of a MDM waveguide side-coupled to a periodic array of MDM stub resonators. (b) Dispersion relation of the plasmonic waveguide system of Fig. 1a calculated using FDFD (black solid curve). Results are shown for a silver–air structure with d = 100 nm , L = 220 nm , and w 0 = w = 50 nm . Also shown is the dispersion relation for lossless metal (red dashed–dotted line), and the resonance frequency ω res (black dashed line) ( ω res 0.067 · 2 π c / d corresponding to λ res 1.5 μm ). (c) Reciprocal of the group velocity v g of light in the plasmonic waveguide system as a function of frequency. All parameters are as in Fig. 1b. (d) Magnetic field profile of the supported optical mode in the system at λ 0 = 1.55 μm . All other parameters are as in Fig. 1b.

Fig. 2
Fig. 2

(a) Reciprocal of v g as a function of L for the plasmonic waveguide system of Fig. 1a at λ 0 = 1.55 μm calculated using FDFD (left black curve) and transmission line theory (right red curve). All other parameters are as in Fig. 1b. (b) Reciprocal of v g versus propagation length L p for the plasmonic waveguide system of Fig. 1a at λ 0 = 1.55 μm calculated using FDFD. Results are shown for d = 100 nm (upper blue curve) and d = 200 nm (lower red curve) as L is varied. All other parameters are as in Fig. 1b. We also show c / v g versus L p for a conventional MDM waveguide at λ 0 = 1.55 μm (dashed curve) as the width of its dielectric region is varied.

Fig. 3
Fig. 3

(a) Schematic of a coupler between a conventional MDM waveguide and the plasmonic waveguide system of Fig. 1a. (b) Transmission for the coupler of Fig. 3a as a function of w 1 for L = 190 nm (upper red curve), and for L = 220 nm (lower black curve) calculated using FDFD. All other parameters are as in Fig. 1b.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

cosh ( γ d ) = cosh 2 ( γ 0 d 2 ) + sinh 2 ( γ 0 d 2 ) + Z 1 Z 0 sinh ( γ 0 d 2 ) cosh ( γ 0 d 2 ) tanh ( γ 1 L ) .
Z 1 ( ω res ) tan [ β 1 ( ω res ) L ] = 2 Z 0 ( ω res ) cot [ β 0 ( ω res ) d 2 ] .

Metrics