Abstract

We experimentally demonstrate a metal–film bidirectional surface wave splitter for guiding light at two visible wavelengths in opposite directions. Two nanoscale gratings were patterned on opposite sides of a subwavelength slit. The metallic surface grating structures were tailored geometrically to have different plasmonic bandgaps, enabling each grating to guide light of one wavelength and prohibit propagation at the other wavelength. The locations of the bandgaps were experimentally confirmed by interferometric measurements. Based on these design principles, a green–red bidirectional surface wave splitter is demonstrated, and the observed optical properties are shown to agree with theoretical predictions.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, Nature 440, 508 (2006).
    [CrossRef] [PubMed]
  2. P. Zijlstra, J. W. M. Chon, and M. Gu, Nature 459, 410 (2009).
    [CrossRef] [PubMed]
  3. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, Nat. Mater. 7, 442 (2008).
    [CrossRef] [PubMed]
  4. Q. Gan, B. Guo, G. Song, L. Chen, Z. Fu, Y. J. Ding, and F. J. Bartoli, Appl. Phys. Lett. 90, 161130 (2007).
    [CrossRef]
  5. Z. Fu, Q. Gan, and F. J. Bartoli, J. Lightwave Technol. 26, 3699 (2008).
    [CrossRef]
  6. Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, Opt. Express 15, 18050 (2007).
    [CrossRef] [PubMed]
  7. F. López-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, Nat. Phys. 3, 324 (2007).
    [CrossRef]
  8. G. Lerosey, D. F. P. Pile, P. Matheu, G. Bartal, and X. Zhang, Nano Lett. 9, 327 (2009).
    [CrossRef]
  9. P. Lalanne, J. P. Hugonin, H. T. Liu, and B. Wang, Surf. Sci. Rep. 64, 453 (2009).
    [CrossRef]
  10. H. Caglayan and E. Ozbay, Opt. Express 16, 19091 (2008).
    [CrossRef]
  11. E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985), Vol.  1.
  12. Q. Gan, Y. Gao, and F. J. Bartoli, Opt. Express 17, 20747 (2009).
    [CrossRef] [PubMed]

2009 (4)

P. Zijlstra, J. W. M. Chon, and M. Gu, Nature 459, 410 (2009).
[CrossRef] [PubMed]

G. Lerosey, D. F. P. Pile, P. Matheu, G. Bartal, and X. Zhang, Nano Lett. 9, 327 (2009).
[CrossRef]

P. Lalanne, J. P. Hugonin, H. T. Liu, and B. Wang, Surf. Sci. Rep. 64, 453 (2009).
[CrossRef]

Q. Gan, Y. Gao, and F. J. Bartoli, Opt. Express 17, 20747 (2009).
[CrossRef] [PubMed]

2008 (3)

2007 (3)

Q. Gan, B. Guo, G. Song, L. Chen, Z. Fu, Y. J. Ding, and F. J. Bartoli, Appl. Phys. Lett. 90, 161130 (2007).
[CrossRef]

F. López-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, Nat. Phys. 3, 324 (2007).
[CrossRef]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, Opt. Express 15, 18050 (2007).
[CrossRef] [PubMed]

2006 (1)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, Nature 440, 508 (2006).
[CrossRef] [PubMed]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, Nat. Mater. 7, 442 (2008).
[CrossRef] [PubMed]

Bartal, G.

G. Lerosey, D. F. P. Pile, P. Matheu, G. Bartal, and X. Zhang, Nano Lett. 9, 327 (2009).
[CrossRef]

Bartoli, F. J.

Bozhevolnyi, S. I.

F. López-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, Nat. Phys. 3, 324 (2007).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, Nature 440, 508 (2006).
[CrossRef] [PubMed]

Caglayan, H.

Chen, L.

Q. Gan, B. Guo, G. Song, L. Chen, Z. Fu, Y. J. Ding, and F. J. Bartoli, Appl. Phys. Lett. 90, 161130 (2007).
[CrossRef]

Chon, J. W. M.

P. Zijlstra, J. W. M. Chon, and M. Gu, Nature 459, 410 (2009).
[CrossRef] [PubMed]

Dereux, A.

F. López-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, Nat. Phys. 3, 324 (2007).
[CrossRef]

Devaux, E.

F. López-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, Nat. Phys. 3, 324 (2007).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, Nature 440, 508 (2006).
[CrossRef] [PubMed]

Ding, Y. J.

Q. Gan, B. Guo, G. Song, L. Chen, Z. Fu, Y. J. Ding, and F. J. Bartoli, Appl. Phys. Lett. 90, 161130 (2007).
[CrossRef]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, Opt. Express 15, 18050 (2007).
[CrossRef] [PubMed]

Ebbesen, T. W.

F. López-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, Nat. Phys. 3, 324 (2007).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, Nature 440, 508 (2006).
[CrossRef] [PubMed]

Fu, Z.

Gan, Q.

Gao, Y.

Garcia-Vidal, F. J.

F. López-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, Nat. Phys. 3, 324 (2007).
[CrossRef]

Gonzalez, M. U.

F. López-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, Nat. Phys. 3, 324 (2007).
[CrossRef]

Gu, M.

P. Zijlstra, J. W. M. Chon, and M. Gu, Nature 459, 410 (2009).
[CrossRef] [PubMed]

Guo, B.

Q. Gan, B. Guo, G. Song, L. Chen, Z. Fu, Y. J. Ding, and F. J. Bartoli, Appl. Phys. Lett. 90, 161130 (2007).
[CrossRef]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, Nat. Mater. 7, 442 (2008).
[CrossRef] [PubMed]

Hugonin, J. P.

P. Lalanne, J. P. Hugonin, H. T. Liu, and B. Wang, Surf. Sci. Rep. 64, 453 (2009).
[CrossRef]

Krenn, J. R.

F. López-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, Nat. Phys. 3, 324 (2007).
[CrossRef]

Lalanne, P.

P. Lalanne, J. P. Hugonin, H. T. Liu, and B. Wang, Surf. Sci. Rep. 64, 453 (2009).
[CrossRef]

Laluet, J.-Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, Nature 440, 508 (2006).
[CrossRef] [PubMed]

Lerosey, G.

G. Lerosey, D. F. P. Pile, P. Matheu, G. Bartal, and X. Zhang, Nano Lett. 9, 327 (2009).
[CrossRef]

Liu, H. T.

P. Lalanne, J. P. Hugonin, H. T. Liu, and B. Wang, Surf. Sci. Rep. 64, 453 (2009).
[CrossRef]

López-Tejeira, F.

F. López-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, Nat. Phys. 3, 324 (2007).
[CrossRef]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, Nat. Mater. 7, 442 (2008).
[CrossRef] [PubMed]

Martin-Moreno, L.

F. López-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, Nat. Phys. 3, 324 (2007).
[CrossRef]

Matheu, P.

G. Lerosey, D. F. P. Pile, P. Matheu, G. Bartal, and X. Zhang, Nano Lett. 9, 327 (2009).
[CrossRef]

Ozbay, E.

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985), Vol.  1.

Pile, D. F. P.

G. Lerosey, D. F. P. Pile, P. Matheu, G. Bartal, and X. Zhang, Nano Lett. 9, 327 (2009).
[CrossRef]

Radko, I. P.

F. López-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, Nat. Phys. 3, 324 (2007).
[CrossRef]

Rodrigo, S. G.

F. López-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, Nat. Phys. 3, 324 (2007).
[CrossRef]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, Nat. Mater. 7, 442 (2008).
[CrossRef] [PubMed]

Song, G.

Q. Gan, B. Guo, G. Song, L. Chen, Z. Fu, Y. J. Ding, and F. J. Bartoli, Appl. Phys. Lett. 90, 161130 (2007).
[CrossRef]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, Nat. Mater. 7, 442 (2008).
[CrossRef] [PubMed]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, Nature 440, 508 (2006).
[CrossRef] [PubMed]

Wang, B.

P. Lalanne, J. P. Hugonin, H. T. Liu, and B. Wang, Surf. Sci. Rep. 64, 453 (2009).
[CrossRef]

Weeber, J. C.

F. López-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, Nat. Phys. 3, 324 (2007).
[CrossRef]

Zhang, X.

G. Lerosey, D. F. P. Pile, P. Matheu, G. Bartal, and X. Zhang, Nano Lett. 9, 327 (2009).
[CrossRef]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, Nat. Mater. 7, 442 (2008).
[CrossRef] [PubMed]

Zijlstra, P.

P. Zijlstra, J. W. M. Chon, and M. Gu, Nature 459, 410 (2009).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

Q. Gan, B. Guo, G. Song, L. Chen, Z. Fu, Y. J. Ding, and F. J. Bartoli, Appl. Phys. Lett. 90, 161130 (2007).
[CrossRef]

J. Lightwave Technol. (1)

Nano Lett. (1)

G. Lerosey, D. F. P. Pile, P. Matheu, G. Bartal, and X. Zhang, Nano Lett. 9, 327 (2009).
[CrossRef]

Nat. Mater. (1)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, Nat. Mater. 7, 442 (2008).
[CrossRef] [PubMed]

Nat. Phys. (1)

F. López-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, Nat. Phys. 3, 324 (2007).
[CrossRef]

Nature (2)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, Nature 440, 508 (2006).
[CrossRef] [PubMed]

P. Zijlstra, J. W. M. Chon, and M. Gu, Nature 459, 410 (2009).
[CrossRef] [PubMed]

Opt. Express (3)

Surf. Sci. Rep. (1)

P. Lalanne, J. P. Hugonin, H. T. Liu, and B. Wang, Surf. Sci. Rep. 64, 453 (2009).
[CrossRef]

Other (1)

E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985), Vol.  1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Numerical dispersion diagrams of the silver surface grating structures with the width and depth of 100 and 20 nm , respectively. The periods of these structures are 400, 450, 500, and 550 nm , respectively. The dotted lines are light lines in the free space.

Fig. 2
Fig. 2

(a) Sketch of the VPMZI geometry. Inset, SEM image of a doublet structure with the grating period of 584 nm . (b) SPP-mediated spectral interference introduced by the SPP modes from the top and bottom surfaces: here we study three doublet samples on a Ag film [a reference sample without nanopatterns (bottom) and two grating samples with the periods of approximately 531 (central) and 584 nm (top)]. In this plot, the low-frequency background and high-frequency noise have been numerically filtered using a fast Fourier transform technique (here we set the low-frequency cutoff at 2.896 μm 1 and the high-frequency cutoff at 217.196 μm 1 ).

Fig. 3
Fig. 3

(a) SEM image of a bidirectional surface wave splitter with two different gratings on two sides of the central slit. The parameters for the gratings are p 594 nm , w 120 nm , and d 18 nm on the left-hand side and p 485 nm , w 120 nm , and d 18 nm on the right-hand side. (b) Microscope image of a device with the illumination wavelengths centered at 542 and 639 nm .

Fig. 4
Fig. 4

(a), (b) FDTD simulation results of the SPP mode propagations along the surface grating structures on the two sides of the central nanoslit. For simplicity in meshing the nanostructure in FDTD modeling, we set p = 600 nm , w = 120 nm , and d = 20 nm for the gratings on the left-hand side and p = 480 nm , w = 120 nm , and d = 20 nm for the gratings on the right-hand side, which are close to the measured sample parameters. The incident wavelength is 542 nm in (a) and 639 nm in (b). Nonuniform mesh sizes are employed in this modeling: the edge grid size for Δ z is 2 nm , and the body grid sizes are Δ x = 20 nm and Δ z = 10 nm .

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

cos [ 2 π L λ ( ε m ( λ ) n 1 2 ε m ( λ ) + n 1 2 ε m ( λ ) n 2 2 ε m ( λ ) + n 2 2 ) ] .

Metrics