Abstract

We demonstrate a frequency-domain streak camera (FDSC) that captures the picosecond time evolution of luminal-velocity refractive index structures in a single shot. In our prototype FDSC, a probe-reference pulse pair propagates obliquely to a subpicosecond pump pulse that creates an evolving nonlinear index structure in glass, supplementing a conventional frequency-domain holographic probe-reference pair that copropagates with the pump. A single spectrometer acquires data from both pairs via spatial or temporal multiplexing, demonstrating the feasibility of a compact frequency-domain tomographic system in which a single spectrometer processes data from multiple probing angles.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Tajima and J. M. Dawon, Phys. Rev. Lett. 43, 267 (1979).
    [CrossRef]
  2. J. P. Geindre, P. Audebert, A. Rousse, F. Falliès, J. C. Gauthier, A. Mysyrowicz, A. Dos Santos, G. Hamoniaux, and A. Antonetti, Opt. Lett. 19, 1997 (1994).
    [CrossRef] [PubMed]
  3. N. Matlis, S. Reed, S. S. Bulanov, V. Chvykov, G. Kalintchenko, T. Matsuoka, P. Rousseau, V. Yanovsky, A. Maksimchuk, S. Kalmykov, G. Shvets, and M. C. Downer, Nature Phys. 2, 749 (2006).
    [CrossRef]
  4. S. P. Le Blanc, E. W. Gaul, N. H. Matlis, A. Rundquist, and M. C. Downer, Opt. Lett. 25, 764 (2000).
    [CrossRef]
  5. S. Kalmykov, S. A. Yi, V. Khudik, and G. Shvets, Phys. Rev. Lett. 103, 135004 (2009).
    [CrossRef] [PubMed]
  6. H.J.Coufal, D.Psaltis, and G.T.Sincerbox, eds., Holographic Data Storage (Springer-Verlag, 2000).
  7. G. Rodrigues and A. J. Taylor, Opt. Lett. 23, 858 (1998).
    [CrossRef]
  8. A. L. Gaeta, Phys. Rev. Lett. 84, 3582 (2000).
    [CrossRef] [PubMed]

2009

S. Kalmykov, S. A. Yi, V. Khudik, and G. Shvets, Phys. Rev. Lett. 103, 135004 (2009).
[CrossRef] [PubMed]

2006

N. Matlis, S. Reed, S. S. Bulanov, V. Chvykov, G. Kalintchenko, T. Matsuoka, P. Rousseau, V. Yanovsky, A. Maksimchuk, S. Kalmykov, G. Shvets, and M. C. Downer, Nature Phys. 2, 749 (2006).
[CrossRef]

2000

1998

1994

1979

T. Tajima and J. M. Dawon, Phys. Rev. Lett. 43, 267 (1979).
[CrossRef]

Antonetti, A.

Audebert, P.

Bulanov, S. S.

N. Matlis, S. Reed, S. S. Bulanov, V. Chvykov, G. Kalintchenko, T. Matsuoka, P. Rousseau, V. Yanovsky, A. Maksimchuk, S. Kalmykov, G. Shvets, and M. C. Downer, Nature Phys. 2, 749 (2006).
[CrossRef]

Chvykov, V.

N. Matlis, S. Reed, S. S. Bulanov, V. Chvykov, G. Kalintchenko, T. Matsuoka, P. Rousseau, V. Yanovsky, A. Maksimchuk, S. Kalmykov, G. Shvets, and M. C. Downer, Nature Phys. 2, 749 (2006).
[CrossRef]

Dawon, J. M.

T. Tajima and J. M. Dawon, Phys. Rev. Lett. 43, 267 (1979).
[CrossRef]

Dos Santos, A.

Downer, M. C.

N. Matlis, S. Reed, S. S. Bulanov, V. Chvykov, G. Kalintchenko, T. Matsuoka, P. Rousseau, V. Yanovsky, A. Maksimchuk, S. Kalmykov, G. Shvets, and M. C. Downer, Nature Phys. 2, 749 (2006).
[CrossRef]

S. P. Le Blanc, E. W. Gaul, N. H. Matlis, A. Rundquist, and M. C. Downer, Opt. Lett. 25, 764 (2000).
[CrossRef]

Falliès, F.

Gaeta, A. L.

A. L. Gaeta, Phys. Rev. Lett. 84, 3582 (2000).
[CrossRef] [PubMed]

Gaul, E. W.

Gauthier, J. C.

Geindre, J. P.

Hamoniaux, G.

Kalintchenko, G.

N. Matlis, S. Reed, S. S. Bulanov, V. Chvykov, G. Kalintchenko, T. Matsuoka, P. Rousseau, V. Yanovsky, A. Maksimchuk, S. Kalmykov, G. Shvets, and M. C. Downer, Nature Phys. 2, 749 (2006).
[CrossRef]

Kalmykov, S.

S. Kalmykov, S. A. Yi, V. Khudik, and G. Shvets, Phys. Rev. Lett. 103, 135004 (2009).
[CrossRef] [PubMed]

N. Matlis, S. Reed, S. S. Bulanov, V. Chvykov, G. Kalintchenko, T. Matsuoka, P. Rousseau, V. Yanovsky, A. Maksimchuk, S. Kalmykov, G. Shvets, and M. C. Downer, Nature Phys. 2, 749 (2006).
[CrossRef]

Khudik, V.

S. Kalmykov, S. A. Yi, V. Khudik, and G. Shvets, Phys. Rev. Lett. 103, 135004 (2009).
[CrossRef] [PubMed]

Le Blanc, S. P.

Maksimchuk, A.

N. Matlis, S. Reed, S. S. Bulanov, V. Chvykov, G. Kalintchenko, T. Matsuoka, P. Rousseau, V. Yanovsky, A. Maksimchuk, S. Kalmykov, G. Shvets, and M. C. Downer, Nature Phys. 2, 749 (2006).
[CrossRef]

Matlis, N.

N. Matlis, S. Reed, S. S. Bulanov, V. Chvykov, G. Kalintchenko, T. Matsuoka, P. Rousseau, V. Yanovsky, A. Maksimchuk, S. Kalmykov, G. Shvets, and M. C. Downer, Nature Phys. 2, 749 (2006).
[CrossRef]

Matlis, N. H.

Matsuoka, T.

N. Matlis, S. Reed, S. S. Bulanov, V. Chvykov, G. Kalintchenko, T. Matsuoka, P. Rousseau, V. Yanovsky, A. Maksimchuk, S. Kalmykov, G. Shvets, and M. C. Downer, Nature Phys. 2, 749 (2006).
[CrossRef]

Mysyrowicz, A.

Reed, S.

N. Matlis, S. Reed, S. S. Bulanov, V. Chvykov, G. Kalintchenko, T. Matsuoka, P. Rousseau, V. Yanovsky, A. Maksimchuk, S. Kalmykov, G. Shvets, and M. C. Downer, Nature Phys. 2, 749 (2006).
[CrossRef]

Rodrigues, G.

Rousse, A.

Rousseau, P.

N. Matlis, S. Reed, S. S. Bulanov, V. Chvykov, G. Kalintchenko, T. Matsuoka, P. Rousseau, V. Yanovsky, A. Maksimchuk, S. Kalmykov, G. Shvets, and M. C. Downer, Nature Phys. 2, 749 (2006).
[CrossRef]

Rundquist, A.

Shvets, G.

S. Kalmykov, S. A. Yi, V. Khudik, and G. Shvets, Phys. Rev. Lett. 103, 135004 (2009).
[CrossRef] [PubMed]

N. Matlis, S. Reed, S. S. Bulanov, V. Chvykov, G. Kalintchenko, T. Matsuoka, P. Rousseau, V. Yanovsky, A. Maksimchuk, S. Kalmykov, G. Shvets, and M. C. Downer, Nature Phys. 2, 749 (2006).
[CrossRef]

Tajima, T.

T. Tajima and J. M. Dawon, Phys. Rev. Lett. 43, 267 (1979).
[CrossRef]

Taylor, A. J.

Yanovsky, V.

N. Matlis, S. Reed, S. S. Bulanov, V. Chvykov, G. Kalintchenko, T. Matsuoka, P. Rousseau, V. Yanovsky, A. Maksimchuk, S. Kalmykov, G. Shvets, and M. C. Downer, Nature Phys. 2, 749 (2006).
[CrossRef]

Yi, S. A.

S. Kalmykov, S. A. Yi, V. Khudik, and G. Shvets, Phys. Rev. Lett. 103, 135004 (2009).
[CrossRef] [PubMed]

Nature Phys.

N. Matlis, S. Reed, S. S. Bulanov, V. Chvykov, G. Kalintchenko, T. Matsuoka, P. Rousseau, V. Yanovsky, A. Maksimchuk, S. Kalmykov, G. Shvets, and M. C. Downer, Nature Phys. 2, 749 (2006).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

S. Kalmykov, S. A. Yi, V. Khudik, and G. Shvets, Phys. Rev. Lett. 103, 135004 (2009).
[CrossRef] [PubMed]

T. Tajima and J. M. Dawon, Phys. Rev. Lett. 43, 267 (1979).
[CrossRef]

A. L. Gaeta, Phys. Rev. Lett. 84, 3582 (2000).
[CrossRef] [PubMed]

Other

H.J.Coufal, D.Psaltis, and G.T.Sincerbox, eds., Holographic Data Storage (Springer-Verlag, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic probe-reference ( P - R ) pulse configurations for (a) frequency-domain holography (FDH) and frequency-domain streak camera (FDSC) at probing angles (b) θ < 90 ° and (c) θ = 180 ° , after pump has just entered ( z 0 ), is about to exit ( z L ), and has exited ( z > L ) the medium (gray). Arrows denote propagation directions of pump-induced index perturbation η ( r , ζ , z ) and chirped P - R pulses. The latter are imaged from z = L to a spectrometer slit.

Fig. 2
Fig. 2

Spatially multiplexed FDSC. (a) Phase shifts on the following: 0 ° probe (top row), showing Δ ϕ p r ( r , ζ ) integrated over z as in Eq. (1); 14 ° probe (middle row), showing streaks. r denotes distance along e ^ , defined in Eq. (2). Bottom row: transmitted pump spectrum and spatial profile (inset), for initial pump intensity (left to right) I = 0.04 , 0.47, 0.93, and 1.47 TW / cm 2 . (b) Measured Δ ϕ p r line-outs along streak axis [e.g., dotted line in second row, second panel of (a)]. (c) Calculated pump intensity evolution I ( z ) from NLSE, which is proportional to Δ ϕ p r line-outs.

Fig. 3
Fig. 3

Temporally multiplexed FDSC. (a) Frequency-domain hologram. (b) Fourier transform of horizontal line-out of hologram and the pulse train format (inset). (c) 0 ° and 14 ° Δ ϕ p r profiles for I 1 TW / cm 2 , w 0 100 μm . Δ ϕ p r is larger than for the 0.93 TW / cm 2 , w 0 20 μm streak in Fig. 2a because the probe transit is longer across the wider structure. (d) Optimized TM pulse train with four probes, one reference, and its Fourier transform.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ ϕ p r ( r , ζ ) = 2 π λ p r 0 L [ 1 η ( r , ζ , z ) ] d z
v = v p cos θ v p r 1 v p v p r cos θ / c 2 e ^ + v p sin θ 1 v p r 2 / c 2 1 v p v p r cos θ / c 2 e ^ ,

Metrics