Abstract

Optofluidic devices offer flexibility for a variety of tasks involving biological specimen. We propose a system for three-dimensional (3D) sensing and identification of biological micro-organisms. This system consists of a microfluidic device along with a digital holographic microscope and relevant statistical recognition algorithms. The microfluidic channel is used to house the micro-organisms, while the holographic microscope and a CCD camera record their digital holograms. The holograms can be computationally reconstructed in 3D using a variety of algorithms, such as the Fresnel transform. Statistical recognition algorithms are used to analyze and identify the micro-organisms from the reconstructed wavefront. Experimental results are presented. Because of computational reconstruction of wavefronts in holographic imaging, this technique offers unique advantages that allow one to image micro-organisms within a deep channel while removing the inherent microfluidic-induced aberration through interferometery.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Zhang, G. Pedrini, W. Osten, and H. J. Tiziani, Opt. Lett. 29, 1787 (2004).
    [CrossRef] [PubMed]
  2. Y. Frauel, T. Naughton, O. Matoba, E. Tahajuerce, and B. Javidi, Proc. IEEE 94, 636 (2006).
    [CrossRef]
  3. S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, and D. Alfieri, Opt. Express 13, 9935 (2005).
    [CrossRef] [PubMed]
  4. B. Javidi and E. Tajahuerce, Opt. Lett. 25, 610 (2000).
    [CrossRef]
  5. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, Opt. Lett. 30, 468 (2005).
    [CrossRef] [PubMed]
  6. V. Mico, J. Garcia, Z. Zalevsky, and B. Javidi, Opt. Lett. 34, 1492 (2009).
    [CrossRef] [PubMed]
  7. F. Dubois, L. Joannes, and J.-C. Legros, Appl. Opt. 38, 7085(1999).
    [CrossRef]
  8. L. Repetto, E. Piano, and C. Pontiggia, Opt. Lett. 29, 1132(2004).
    [CrossRef] [PubMed]
  9. B. Javidi, I. Moon, S. Yeom, and E. Carapezza, Opt. Express 13, 4492 (2005).
    [CrossRef] [PubMed]
  10. B. Javidi, I. Moon, and S. Yeom, Opt. Photon. News 17, 16(2006).
    [CrossRef]
  11. B. Javidi, I. Moon, and S. Yeom, Opt. Express 14, 12096(2006).
    [CrossRef] [PubMed]
  12. I. Moon and B. Javidi, J. R. Soc. Interface 4, 305 (2007).
    [CrossRef] [PubMed]
  13. A. Ozcan and U. Dmirci, Lab Chip 8, 98 (2008).
    [CrossRef]
  14. Y. Fainman, L. Lee, D. Psaltis, and C. Yang, Optofluidics: Fundamentals, Devices, and Applications (McGraw-Hill, 2009).
  15. D. Kim and B. Javidi, Opt. Express 12, 5539 (2004).
    [CrossRef] [PubMed]
  16. I. Moon and B. Javidi, IEEE Trans. Med. Imaging 27, 1782 (2008).
    [CrossRef] [PubMed]

2009

2008

A. Ozcan and U. Dmirci, Lab Chip 8, 98 (2008).
[CrossRef]

I. Moon and B. Javidi, IEEE Trans. Med. Imaging 27, 1782 (2008).
[CrossRef] [PubMed]

2007

I. Moon and B. Javidi, J. R. Soc. Interface 4, 305 (2007).
[CrossRef] [PubMed]

2006

B. Javidi, I. Moon, and S. Yeom, Opt. Express 14, 12096(2006).
[CrossRef] [PubMed]

Y. Frauel, T. Naughton, O. Matoba, E. Tahajuerce, and B. Javidi, Proc. IEEE 94, 636 (2006).
[CrossRef]

B. Javidi, I. Moon, and S. Yeom, Opt. Photon. News 17, 16(2006).
[CrossRef]

2005

2004

2000

1999

Alfieri, D.

Carapezza, E.

Colomb, T.

Cuche, E.

De Nicola, S.

Depeursinge, C.

Dmirci, U.

A. Ozcan and U. Dmirci, Lab Chip 8, 98 (2008).
[CrossRef]

Dubois, F.

Emery, Y.

Fainman, Y.

Y. Fainman, L. Lee, D. Psaltis, and C. Yang, Optofluidics: Fundamentals, Devices, and Applications (McGraw-Hill, 2009).

Ferraro, P.

Finizio, A.

Frauel, Y.

Y. Frauel, T. Naughton, O. Matoba, E. Tahajuerce, and B. Javidi, Proc. IEEE 94, 636 (2006).
[CrossRef]

Garcia, J.

Javidi, B.

Joannes, L.

Kim, D.

Lee, L.

Y. Fainman, L. Lee, D. Psaltis, and C. Yang, Optofluidics: Fundamentals, Devices, and Applications (McGraw-Hill, 2009).

Legros, J.-C.

Magistretti, P. J.

Marquet, P.

Matoba, O.

Y. Frauel, T. Naughton, O. Matoba, E. Tahajuerce, and B. Javidi, Proc. IEEE 94, 636 (2006).
[CrossRef]

Mico, V.

Moon, I.

I. Moon and B. Javidi, IEEE Trans. Med. Imaging 27, 1782 (2008).
[CrossRef] [PubMed]

I. Moon and B. Javidi, J. R. Soc. Interface 4, 305 (2007).
[CrossRef] [PubMed]

B. Javidi, I. Moon, and S. Yeom, Opt. Express 14, 12096(2006).
[CrossRef] [PubMed]

B. Javidi, I. Moon, and S. Yeom, Opt. Photon. News 17, 16(2006).
[CrossRef]

B. Javidi, I. Moon, S. Yeom, and E. Carapezza, Opt. Express 13, 4492 (2005).
[CrossRef] [PubMed]

Naughton, T.

Y. Frauel, T. Naughton, O. Matoba, E. Tahajuerce, and B. Javidi, Proc. IEEE 94, 636 (2006).
[CrossRef]

Osten, W.

Ozcan, A.

A. Ozcan and U. Dmirci, Lab Chip 8, 98 (2008).
[CrossRef]

Pedrini, G.

Piano, E.

Pierattini, G.

Pontiggia, C.

Psaltis, D.

Y. Fainman, L. Lee, D. Psaltis, and C. Yang, Optofluidics: Fundamentals, Devices, and Applications (McGraw-Hill, 2009).

Rappaz, B.

Repetto, L.

Tahajuerce, E.

Y. Frauel, T. Naughton, O. Matoba, E. Tahajuerce, and B. Javidi, Proc. IEEE 94, 636 (2006).
[CrossRef]

Tajahuerce, E.

Tiziani, H. J.

Yang, C.

Y. Fainman, L. Lee, D. Psaltis, and C. Yang, Optofluidics: Fundamentals, Devices, and Applications (McGraw-Hill, 2009).

Yeom, S.

Zalevsky, Z.

Zhang, Y.

Appl. Opt.

IEEE Trans. Med. Imaging

I. Moon and B. Javidi, IEEE Trans. Med. Imaging 27, 1782 (2008).
[CrossRef] [PubMed]

J. R. Soc. Interface

I. Moon and B. Javidi, J. R. Soc. Interface 4, 305 (2007).
[CrossRef] [PubMed]

Lab Chip

A. Ozcan and U. Dmirci, Lab Chip 8, 98 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Photon. News

B. Javidi, I. Moon, and S. Yeom, Opt. Photon. News 17, 16(2006).
[CrossRef]

Proc. IEEE

Y. Frauel, T. Naughton, O. Matoba, E. Tahajuerce, and B. Javidi, Proc. IEEE 94, 636 (2006).
[CrossRef]

Other

Y. Fainman, L. Lee, D. Psaltis, and C. Yang, Optofluidics: Fundamentals, Devices, and Applications (McGraw-Hill, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Digital holographic microscope along with the microfluid device (M, mirror; MO, microscopic objective; BS, beam splitter).

Fig. 2
Fig. 2

Procedure for identification using the recorded digital holograms of micro-organisms.

Fig. 3
Fig. 3

(a) Example of digital hologram of Euglena acus. (b) Amplitude and phase section images of Euglena acus at 18.75 μm . (c) Example of digital hologram of Chilomanas. (d) Amplitude and phase section images of Chilomanas at 18.75 μm .

Fig. 4
Fig. 4

Statistical sampling distributions of the test statistic MSD for the null hypothesis and unknown input data.

Fig. 5
Fig. 5

Experimental results of R values for five samples of nontraining true class and five samples of false class.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

U ( x , y , d ) = F 1 { filt [ F { U ( x , y , 0 ) } ] e i k 1 λ 2 f X 2 λ 2 f Y 2 z } ,
F p ( u ) = P ( X p ( i ) u ) = # { X p ( i ) u } n ,

Metrics