Abstract

We demonstrate the ability of single-subwavelength-size nanoapertures fabricated in a gold metal thin film to enhance second-harmonic generation (SHG) as compared to a bare metal film. Nonlinear microscopy imaging with polarization resolution is used to quantify the SHG enhancement in circular and triangular nanoaperture shapes. The dependence of the measured SHG enhancement on circular aperture diameters is seen to originate from both phase retardation effects and field enhancements at the nanoaperture edge. Triangular nanoapertures exhibit superior SHG enhancement compared with circular ones, as expected from their noncentrosymmetric shape.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, Phys. Rev. Lett. 90, 013903 (2003).
    [CrossRef] [PubMed]
  2. P. Guyot-Sionnest, W. Chen, and Y. R. Shen, Phys. Rev. B 33, 8254 (1986).
    [CrossRef]
  3. J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, Nano Lett. 10, 1717(2010).
    [CrossRef] [PubMed]
  4. C. Genet and T. W. Ebbesen, Nature 445, 39 (2007).
    [CrossRef] [PubMed]
  5. T.-D. Onuta, M. Waegele, C. C. DuFort, W. L. Schaich, and B. Dragnea, Nano Lett. 7, 557 (2007).
    [CrossRef] [PubMed]
  6. A. Nahata, R. A. Linke, T. Ishi, and K. Ohashi, Opt. Lett. 28, 423 (2003).
    [CrossRef] [PubMed]
  7. M. Airola, Y. Liu, and S. Blair, J. Opt. A 7, S118 (2005).
    [CrossRef]
  8. J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, Phys. Rev. Lett. 97, 146102 (2006).
    [CrossRef] [PubMed]
  9. T. Xu, X. Jiao, G. P. Zhang, and S. Blair, Opt. Express 15, 13894 (2007).
    [CrossRef] [PubMed]
  10. S. Brasselet, V. Le Floc’h, F. Treussart, J. F. Roch, J. Zyss, E. Botzung-Appert, and A. Ibanez, Phys. Rev. Lett. 92, 207401(2004).
    [CrossRef] [PubMed]
  11. C. W. Teplin and C. T. Rogers, J. Appl. Phys. 96, 3626(2004).
    [CrossRef]
  12. B. Richards and E. Wolf, Proc. R. Soc. Lond., Ser. A 253, 358 (1959).
    [CrossRef]
  13. J. I. Dadap, J. Shan, and T. Heinz, J. Opt. Soc. Am. B 21, 1328 (2004).
    [CrossRef]
  14. N. Sandeau, L. Le Xuan, D. Chauvat, C. Zhou, J.-F. Roch, and S. Brasselet, Opt. Express 15, 16051 (2007).
    [CrossRef] [PubMed]
  15. E. Popov, M. Nevière, A. Sentenac, N. Bonod, A.-L. Fehrembach, J. Wenger, P.-F. Lenne, and H. Rigneault, J. Opt. Soc. Am. A 24, 339 (2007).
    [CrossRef]
  16. S. Brasselet and J. Zyss, J. Opt. Soc. Am. B 15, 257 (1998).
    [CrossRef]

2010

J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, Nano Lett. 10, 1717(2010).
[CrossRef] [PubMed]

2007

2006

J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, Phys. Rev. Lett. 97, 146102 (2006).
[CrossRef] [PubMed]

2005

M. Airola, Y. Liu, and S. Blair, J. Opt. A 7, S118 (2005).
[CrossRef]

2004

J. I. Dadap, J. Shan, and T. Heinz, J. Opt. Soc. Am. B 21, 1328 (2004).
[CrossRef]

S. Brasselet, V. Le Floc’h, F. Treussart, J. F. Roch, J. Zyss, E. Botzung-Appert, and A. Ibanez, Phys. Rev. Lett. 92, 207401(2004).
[CrossRef] [PubMed]

C. W. Teplin and C. T. Rogers, J. Appl. Phys. 96, 3626(2004).
[CrossRef]

2003

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, Phys. Rev. Lett. 90, 013903 (2003).
[CrossRef] [PubMed]

A. Nahata, R. A. Linke, T. Ishi, and K. Ohashi, Opt. Lett. 28, 423 (2003).
[CrossRef] [PubMed]

1998

1986

P. Guyot-Sionnest, W. Chen, and Y. R. Shen, Phys. Rev. B 33, 8254 (1986).
[CrossRef]

1959

B. Richards and E. Wolf, Proc. R. Soc. Lond., Ser. A 253, 358 (1959).
[CrossRef]

Airola, M.

M. Airola, Y. Liu, and S. Blair, J. Opt. A 7, S118 (2005).
[CrossRef]

Bachelier, G.

J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, Nano Lett. 10, 1717(2010).
[CrossRef] [PubMed]

Benichou, E.

J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, Nano Lett. 10, 1717(2010).
[CrossRef] [PubMed]

Beversluis, M.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, Phys. Rev. Lett. 90, 013903 (2003).
[CrossRef] [PubMed]

Blair, S.

Bonod, N.

Botzung-Appert, E.

S. Brasselet, V. Le Floc’h, F. Treussart, J. F. Roch, J. Zyss, E. Botzung-Appert, and A. Ibanez, Phys. Rev. Lett. 92, 207401(2004).
[CrossRef] [PubMed]

Bouhelier, A.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, Phys. Rev. Lett. 90, 013903 (2003).
[CrossRef] [PubMed]

Brasselet, S.

Brevet, P.-F.

J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, Nano Lett. 10, 1717(2010).
[CrossRef] [PubMed]

Butet, J.

J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, Nano Lett. 10, 1717(2010).
[CrossRef] [PubMed]

Chauvat, D.

Chen, W.

P. Guyot-Sionnest, W. Chen, and Y. R. Shen, Phys. Rev. B 33, 8254 (1986).
[CrossRef]

Dadap, J. I.

Dragnea, B.

T.-D. Onuta, M. Waegele, C. C. DuFort, W. L. Schaich, and B. Dragnea, Nano Lett. 7, 557 (2007).
[CrossRef] [PubMed]

Duboisset, J.

J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, Nano Lett. 10, 1717(2010).
[CrossRef] [PubMed]

DuFort, C. C.

T.-D. Onuta, M. Waegele, C. C. DuFort, W. L. Schaich, and B. Dragnea, Nano Lett. 7, 557 (2007).
[CrossRef] [PubMed]

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, Nature 445, 39 (2007).
[CrossRef] [PubMed]

Enoch, S.

J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, Phys. Rev. Lett. 97, 146102 (2006).
[CrossRef] [PubMed]

Fehrembach, A.-L.

Genet, C.

C. Genet and T. W. Ebbesen, Nature 445, 39 (2007).
[CrossRef] [PubMed]

Guyot-Sionnest, P.

P. Guyot-Sionnest, W. Chen, and Y. R. Shen, Phys. Rev. B 33, 8254 (1986).
[CrossRef]

Harmsen, R. H.

J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, Phys. Rev. Lett. 97, 146102 (2006).
[CrossRef] [PubMed]

Hartschuh, A.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, Phys. Rev. Lett. 90, 013903 (2003).
[CrossRef] [PubMed]

Heinz, T.

Ibanez, A.

S. Brasselet, V. Le Floc’h, F. Treussart, J. F. Roch, J. Zyss, E. Botzung-Appert, and A. Ibanez, Phys. Rev. Lett. 92, 207401(2004).
[CrossRef] [PubMed]

Ishi, T.

Jiao, X.

Jonin, C.

J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, Nano Lett. 10, 1717(2010).
[CrossRef] [PubMed]

Kuipers, L.

J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, Phys. Rev. Lett. 97, 146102 (2006).
[CrossRef] [PubMed]

Le Floc’h, V.

S. Brasselet, V. Le Floc’h, F. Treussart, J. F. Roch, J. Zyss, E. Botzung-Appert, and A. Ibanez, Phys. Rev. Lett. 92, 207401(2004).
[CrossRef] [PubMed]

Le Xuan, L.

Lenne, P.-F.

Linke, R. A.

Liu, Y.

M. Airola, Y. Liu, and S. Blair, J. Opt. A 7, S118 (2005).
[CrossRef]

Nahata, A.

Nevière, M.

Novotny, L.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, Phys. Rev. Lett. 90, 013903 (2003).
[CrossRef] [PubMed]

Ohashi, K.

Onuta, T.-D.

T.-D. Onuta, M. Waegele, C. C. DuFort, W. L. Schaich, and B. Dragnea, Nano Lett. 7, 557 (2007).
[CrossRef] [PubMed]

Popov, E.

Prangsma, J. C.

J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, Phys. Rev. Lett. 97, 146102 (2006).
[CrossRef] [PubMed]

Richards, B.

B. Richards and E. Wolf, Proc. R. Soc. Lond., Ser. A 253, 358 (1959).
[CrossRef]

Rigneault, H.

Roch, J. F.

S. Brasselet, V. Le Floc’h, F. Treussart, J. F. Roch, J. Zyss, E. Botzung-Appert, and A. Ibanez, Phys. Rev. Lett. 92, 207401(2004).
[CrossRef] [PubMed]

Roch, J.-F.

Rogers, C. T.

C. W. Teplin and C. T. Rogers, J. Appl. Phys. 96, 3626(2004).
[CrossRef]

Russier-Antoine, I.

J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, Nano Lett. 10, 1717(2010).
[CrossRef] [PubMed]

Sandeau, N.

Sandtke, M.

J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, Phys. Rev. Lett. 97, 146102 (2006).
[CrossRef] [PubMed]

Schaich, W. L.

T.-D. Onuta, M. Waegele, C. C. DuFort, W. L. Schaich, and B. Dragnea, Nano Lett. 7, 557 (2007).
[CrossRef] [PubMed]

Segerink, F. B.

J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, Phys. Rev. Lett. 97, 146102 (2006).
[CrossRef] [PubMed]

Sentenac, A.

Shan, J.

Shen, Y. R.

P. Guyot-Sionnest, W. Chen, and Y. R. Shen, Phys. Rev. B 33, 8254 (1986).
[CrossRef]

Teplin, C. W.

C. W. Teplin and C. T. Rogers, J. Appl. Phys. 96, 3626(2004).
[CrossRef]

Treussart, F.

S. Brasselet, V. Le Floc’h, F. Treussart, J. F. Roch, J. Zyss, E. Botzung-Appert, and A. Ibanez, Phys. Rev. Lett. 92, 207401(2004).
[CrossRef] [PubMed]

van Nieuwstadt, J. A. H.

J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, Phys. Rev. Lett. 97, 146102 (2006).
[CrossRef] [PubMed]

Waegele, M.

T.-D. Onuta, M. Waegele, C. C. DuFort, W. L. Schaich, and B. Dragnea, Nano Lett. 7, 557 (2007).
[CrossRef] [PubMed]

Wenger, J.

Wolf, E.

B. Richards and E. Wolf, Proc. R. Soc. Lond., Ser. A 253, 358 (1959).
[CrossRef]

Xu, T.

Zhang, G. P.

Zhou, C.

Zyss, J.

S. Brasselet, V. Le Floc’h, F. Treussart, J. F. Roch, J. Zyss, E. Botzung-Appert, and A. Ibanez, Phys. Rev. Lett. 92, 207401(2004).
[CrossRef] [PubMed]

S. Brasselet and J. Zyss, J. Opt. Soc. Am. B 15, 257 (1998).
[CrossRef]

J. Appl. Phys.

C. W. Teplin and C. T. Rogers, J. Appl. Phys. 96, 3626(2004).
[CrossRef]

J. Opt. A

M. Airola, Y. Liu, and S. Blair, J. Opt. A 7, S118 (2005).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Nano Lett.

T.-D. Onuta, M. Waegele, C. C. DuFort, W. L. Schaich, and B. Dragnea, Nano Lett. 7, 557 (2007).
[CrossRef] [PubMed]

J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, Nano Lett. 10, 1717(2010).
[CrossRef] [PubMed]

Nature

C. Genet and T. W. Ebbesen, Nature 445, 39 (2007).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. B

P. Guyot-Sionnest, W. Chen, and Y. R. Shen, Phys. Rev. B 33, 8254 (1986).
[CrossRef]

Phys. Rev. Lett.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, Phys. Rev. Lett. 90, 013903 (2003).
[CrossRef] [PubMed]

J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, Phys. Rev. Lett. 97, 146102 (2006).
[CrossRef] [PubMed]

S. Brasselet, V. Le Floc’h, F. Treussart, J. F. Roch, J. Zyss, E. Botzung-Appert, and A. Ibanez, Phys. Rev. Lett. 92, 207401(2004).
[CrossRef] [PubMed]

Proc. R. Soc. Lond., Ser. A

B. Richards and E. Wolf, Proc. R. Soc. Lond., Ser. A 253, 358 (1959).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Nonlinear induced dipoles in a metal nanoaperture. (b) Experimental scheme of the nonlinear microscopy imaging and SHG image of a circular nanoaperture (diam eter 195 nm ). (c) Emission spectrum from a nanoaperture and the bare metal surface, measured using a spectrograph at the exit of the microscope (diameter 195 nm , excitation: horizontal polarization). Typical average power at the objective focus: a few milliwatts.

Fig. 2
Fig. 2

(a) SHG enhancement factor (averaged over all incident polarizations) relative to the signal from the bare metal surface for circular apertures, as a function of their diameter. Continuous line, experimental data. Dashed line, simple dipole model. Semidashed line, model including the cal culated field enhancement factors. Theoretical curves are normalized to the experimental maximum. The inset is a typical electron microscopy image of the studied structures. (b) Geometry used for the calculation of the scattered electric field. (c) Calculated normalized map of the radial component | E n ω | of the field as a function of the angle around the surface (θ) and the height (Z) relative to the glass substrate, in a 195 nm diameter aperture. The incident field is polarized along the X direction ( θ = 90 ° ).

Fig. 3
Fig. 3

(a) Measured SHG enhancement factor for triangular apertures as a function of their side length. The insets are typical electron microscopy images of the studied structures. (b) Polar representation of the experimental polarization-resolved SHG response analyzed along the X (red) and Y (blue) analysis directions for two triangular nanoapertures of 320 nm size (top) and 170 nm diameter (bottom). (c) Phenomenological normalized SHG polarization responses calculated from three centered nonlinear dipoles (black arrows), whose orientations are calculated from the normal directions to the drawn triangles faces. Above, triangle of edges of equal sizes. Below, lower basis of the triangle reduced by a factor of 2, and tilt angle by 10 ° relative to its original orientation. A polarization-independent background of 30% of the maximum intensity is added.

Metrics