Abstract

The trapping of Cherenkov radiation by Raman solitons is an important process during supercontinuum generation and has been demonstrated as an effective way to extend the Cherenkov-radiation-based wavelength conversion toward the visible band. In this Letter we demonstrate that the existence of the self-steepening effect increases the energy of the Cherenkov radiation during the trap while reducing its frequency blueshift. The frequency and energy evolutions of Cherenkov radiation are analytically studied, and the predictions are consistent with the simulations based on the generalized nonlinear Schrödinger equation.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, Opt. Express 12, 124 (2004).
    [CrossRef] [PubMed]
  2. B. W. Liu, M. L. Hu, X. H. Fang, Y. F. Li, L. Chai, C. Y. Wang, W. J. Tong, J. Luo, A. A. Voronin, and A. M. Zheltikov, Opt. Express 16, 14987 (2008).
    [CrossRef] [PubMed]
  3. G. Q. Chang, L. J. Chen, and F. X. Kärtner, Opt. Lett. 35, 2361 (2010).
    [CrossRef] [PubMed]
  4. A. V. Gorbach and D. V. Skryabin, Nat. Photon. 1, 653(2007).
    [CrossRef]
  5. A. A. Voronin and A. M. Zheltikov, Opt. Lett. 33, 1723(2008).
    [CrossRef] [PubMed]
  6. J. P. Gordon, Opt. Lett. 11, 662 (1986).
    [CrossRef] [PubMed]
  7. S. Hill, C. E. Kuklewicz, U. Leonhardt, and F. König, Opt. Express 17, 13588 (2009).
    [CrossRef] [PubMed]
  8. N. Nishizawa and T. Goto, Opt. Lett. 27, 152 (2002).
    [CrossRef]
  9. J. M. Stone and J. C. Knight, Opt. Express 16, 2670 (2008).
    [CrossRef] [PubMed]
  10. P. V. Mamyshev and S. V. Chernikov, Opt. Lett. 15, 1076(1990).
    [CrossRef] [PubMed]

2010 (1)

2009 (1)

2008 (3)

2007 (1)

A. V. Gorbach and D. V. Skryabin, Nat. Photon. 1, 653(2007).
[CrossRef]

2004 (1)

2002 (1)

1990 (1)

1986 (1)

Chai, L.

Chang, G. Q.

Chen, L. J.

Chernikov, S. V.

Cristiani, I.

Degiorgio, V.

Fang, X. H.

Gorbach, A. V.

A. V. Gorbach and D. V. Skryabin, Nat. Photon. 1, 653(2007).
[CrossRef]

Gordon, J. P.

Goto, T.

Hill, S.

Hu, M. L.

Kärtner, F. X.

Knight, J. C.

König, F.

Kuklewicz, C. E.

Leonhardt, U.

Li, Y. F.

Liu, B. W.

Luo, J.

Mamyshev, P. V.

Nishizawa, N.

Skryabin, D. V.

A. V. Gorbach and D. V. Skryabin, Nat. Photon. 1, 653(2007).
[CrossRef]

Stone, J. M.

Tartara, L.

Tediosi, R.

Tong, W. J.

Voronin, A. A.

Wang, C. Y.

Zheltikov, A. M.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Dispersion and nonlinear coefficient of the PCF used in this Letter. The inset shows the group velocity-matching (GVM) curves between the soliton and the CR in the PCF.

Fig. 2
Fig. 2

Wavelength evolutions of the CR pulse and the soliton along propagation.

Fig. 3
Fig. 3

Spectral evolution of the bound pulses along the fiber.

Fig. 4
Fig. 4

(a) Energy evolutions and (b) variations of photon numbers of CR pulse and soliton with propagation.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

z = 8 ( 1.763 ) 4 ν s 0 8 π c σ γ 0 4 W s 0 4 ν s 0 ν s | β 2 ( ν ) | 3 ν 8 h ( τ ) d ν ,
n = 2 β n s [ 2 π ( ν CR ν s ) ] n 1 ( n 1 ) ! = 0 ,
A ˜ ( z , 2 π ν ) z i n = 2 β n [ 2 π ( ν ν 0 ) ] n n ! A ˜ ( z , 2 π ν ) = i γ ( ν ) F { A ( z , T ) R ( T ) | A ( z , T T ) | 2 d T } .
W CR ( z ) = W CR ( 0 ) ν CR ( z ) / ν CR ( 0 ) , W s = W s ( 0 ) ν s ( z ) / ν s ( 0 ) ,

Metrics