Abstract

A compact acousto-optic (AO) filter with multireflector (MR) beam expanders constituted by 32 photonic crystal rows of airholes in LiNbO3 waveguide has been proposed and numerically studied by the two-dimensional finite-difference–time-domain method. The diameter and position of every row of holes are gradually varied along MR beam expanders in order to provide high efficiency and good sidelobe suppression. Device sizes are 70μm×150μm, with an FWHM bandwidth of 4.4nm, a tuning range of 110nm, internal loss of 3dB, and sidelobes of 20dB, thus providing a unique value of 0.6μm2 for the product FWHM bandwidth by an AO length. It is intended for use in fiber optics telecommunications and sensing.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Herrmann, K. Schäfer, and Ch. Schmidt, IEEE Photon. Technol. Lett. 10, 120 (1998).
    [CrossRef]
  2. T. Nakazawa, M. Doi, S. Taniguchi, Y. Takasu, and M. Seino, in Proceedings of the Optical Fiber Communication Conference, Vol. 2 of 1998 OSA Technical Digest Series (Optical Society of America, 1998), paper PD1.
  3. M. Kadota, K. Yamada, H. Kobayashi, and S. Tanaka, in Proceedings of the 18th IEEE International Symposium on the Applications of Ferroelectrics (IEEE, 2009), pp. 1–4.
    [CrossRef]
  4. A. V. Tsarev, Appl. Phys. B 73, 495 (2001).
  5. A. V. Tsarev and E. A. Kolosovsky, Optoelectron. Instrum. Data Proc. 6, 80 (2006).
  6. A. V. Tsarev, Quantum Electron. 37, 393 (2007).
    [CrossRef]
  7. A. V. Tsarev, in Proceedings of the 2010 IEEE Region 8 International Conference on Computational Technologies in Electrical and Electronics Engineering (IEEE, 2010), pp. 187–188.
    [CrossRef]
  8. P. Pottier, S. Mastroiacovo, and R. M. De La Rue, Opt. Express 14, 5617 (2006).
    [CrossRef] [PubMed]
  9. A. V. Tsarev, Opt. Lett. 35, 968 (2010).
    [CrossRef] [PubMed]
  10. M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, Appl. Phys. Lett. 87, 241101 (2005).
    [CrossRef]
  11. F. Chen, J. Appl. Phys. 106, 081101 (2009).
    [CrossRef]
  12. C. C. Chan and T. Tamir, Opt. Lett. 10, 378 (1985).
    [CrossRef] [PubMed]
  13. N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, Appl. Phys. Lett. 96, 131103 (2010).
    [CrossRef]
  14. X. S. Qian, J. P. Li, M. H. Lu, Y. Q. Lu, and Y. F. Chen, J. Appl. Phys. 106, 043107 (2009).
    [CrossRef]
  15. C. Tsai, IEEE Trans. Circuits Syst. Video Technol. 26, 1072(1979).
  16. RSoft Photonic CAD Suite, version 8.0, single license, www.rsoftdesign.com.

2010 (2)

N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, Appl. Phys. Lett. 96, 131103 (2010).
[CrossRef]

A. V. Tsarev, Opt. Lett. 35, 968 (2010).
[CrossRef] [PubMed]

2009 (2)

X. S. Qian, J. P. Li, M. H. Lu, Y. Q. Lu, and Y. F. Chen, J. Appl. Phys. 106, 043107 (2009).
[CrossRef]

F. Chen, J. Appl. Phys. 106, 081101 (2009).
[CrossRef]

2007 (1)

A. V. Tsarev, Quantum Electron. 37, 393 (2007).
[CrossRef]

2006 (2)

A. V. Tsarev and E. A. Kolosovsky, Optoelectron. Instrum. Data Proc. 6, 80 (2006).

P. Pottier, S. Mastroiacovo, and R. M. De La Rue, Opt. Express 14, 5617 (2006).
[CrossRef] [PubMed]

2005 (1)

M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, Appl. Phys. Lett. 87, 241101 (2005).
[CrossRef]

2001 (1)

A. V. Tsarev, Appl. Phys. B 73, 495 (2001).

1998 (1)

H. Herrmann, K. Schäfer, and Ch. Schmidt, IEEE Photon. Technol. Lett. 10, 120 (1998).
[CrossRef]

1985 (1)

1979 (1)

C. Tsai, IEEE Trans. Circuits Syst. Video Technol. 26, 1072(1979).

Baida, F. I.

M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, Appl. Phys. Lett. 87, 241101 (2005).
[CrossRef]

Benchabane, S.

N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, Appl. Phys. Lett. 96, 131103 (2010).
[CrossRef]

Bernal, M.-P.

M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, Appl. Phys. Lett. 87, 241101 (2005).
[CrossRef]

Chan, C. C.

Chen, F.

F. Chen, J. Appl. Phys. 106, 081101 (2009).
[CrossRef]

Chen, Y. F.

X. S. Qian, J. P. Li, M. H. Lu, Y. Q. Lu, and Y. F. Chen, J. Appl. Phys. 106, 043107 (2009).
[CrossRef]

Courjal, N.

N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, Appl. Phys. Lett. 96, 131103 (2010).
[CrossRef]

M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, Appl. Phys. Lett. 87, 241101 (2005).
[CrossRef]

Dahdah, J.

N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, Appl. Phys. Lett. 96, 131103 (2010).
[CrossRef]

De La Rue, R. M.

Doi, M.

T. Nakazawa, M. Doi, S. Taniguchi, Y. Takasu, and M. Seino, in Proceedings of the Optical Fiber Communication Conference, Vol. 2 of 1998 OSA Technical Digest Series (Optical Society of America, 1998), paper PD1.

Gruson, Y.

N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, Appl. Phys. Lett. 96, 131103 (2010).
[CrossRef]

Herrmann, H.

H. Herrmann, K. Schäfer, and Ch. Schmidt, IEEE Photon. Technol. Lett. 10, 120 (1998).
[CrossRef]

Kadota, M.

M. Kadota, K. Yamada, H. Kobayashi, and S. Tanaka, in Proceedings of the 18th IEEE International Symposium on the Applications of Ferroelectrics (IEEE, 2009), pp. 1–4.
[CrossRef]

Kobayashi, H.

M. Kadota, K. Yamada, H. Kobayashi, and S. Tanaka, in Proceedings of the 18th IEEE International Symposium on the Applications of Ferroelectrics (IEEE, 2009), pp. 1–4.
[CrossRef]

Kolosovsky, E. A.

A. V. Tsarev and E. A. Kolosovsky, Optoelectron. Instrum. Data Proc. 6, 80 (2006).

Laude, V.

N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, Appl. Phys. Lett. 96, 131103 (2010).
[CrossRef]

Li, J. P.

X. S. Qian, J. P. Li, M. H. Lu, Y. Q. Lu, and Y. F. Chen, J. Appl. Phys. 106, 043107 (2009).
[CrossRef]

Lu, M. H.

X. S. Qian, J. P. Li, M. H. Lu, Y. Q. Lu, and Y. F. Chen, J. Appl. Phys. 106, 043107 (2009).
[CrossRef]

Lu, Y. Q.

X. S. Qian, J. P. Li, M. H. Lu, Y. Q. Lu, and Y. F. Chen, J. Appl. Phys. 106, 043107 (2009).
[CrossRef]

Mastroiacovo, S.

Nakazawa, T.

T. Nakazawa, M. Doi, S. Taniguchi, Y. Takasu, and M. Seino, in Proceedings of the Optical Fiber Communication Conference, Vol. 2 of 1998 OSA Technical Digest Series (Optical Society of America, 1998), paper PD1.

Pottier, P.

Qian, X. S.

X. S. Qian, J. P. Li, M. H. Lu, Y. Q. Lu, and Y. F. Chen, J. Appl. Phys. 106, 043107 (2009).
[CrossRef]

Roussey, M.

M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, Appl. Phys. Lett. 87, 241101 (2005).
[CrossRef]

Schäfer, K.

H. Herrmann, K. Schäfer, and Ch. Schmidt, IEEE Photon. Technol. Lett. 10, 120 (1998).
[CrossRef]

Schmidt, Ch.

H. Herrmann, K. Schäfer, and Ch. Schmidt, IEEE Photon. Technol. Lett. 10, 120 (1998).
[CrossRef]

Seino, M.

T. Nakazawa, M. Doi, S. Taniguchi, Y. Takasu, and M. Seino, in Proceedings of the Optical Fiber Communication Conference, Vol. 2 of 1998 OSA Technical Digest Series (Optical Society of America, 1998), paper PD1.

Takasu, Y.

T. Nakazawa, M. Doi, S. Taniguchi, Y. Takasu, and M. Seino, in Proceedings of the Optical Fiber Communication Conference, Vol. 2 of 1998 OSA Technical Digest Series (Optical Society of America, 1998), paper PD1.

Tamir, T.

Tanaka, S.

M. Kadota, K. Yamada, H. Kobayashi, and S. Tanaka, in Proceedings of the 18th IEEE International Symposium on the Applications of Ferroelectrics (IEEE, 2009), pp. 1–4.
[CrossRef]

Taniguchi, S.

T. Nakazawa, M. Doi, S. Taniguchi, Y. Takasu, and M. Seino, in Proceedings of the Optical Fiber Communication Conference, Vol. 2 of 1998 OSA Technical Digest Series (Optical Society of America, 1998), paper PD1.

Tsai, C.

C. Tsai, IEEE Trans. Circuits Syst. Video Technol. 26, 1072(1979).

Tsarev, A. V.

A. V. Tsarev, Opt. Lett. 35, 968 (2010).
[CrossRef] [PubMed]

A. V. Tsarev, Quantum Electron. 37, 393 (2007).
[CrossRef]

A. V. Tsarev and E. A. Kolosovsky, Optoelectron. Instrum. Data Proc. 6, 80 (2006).

A. V. Tsarev, Appl. Phys. B 73, 495 (2001).

A. V. Tsarev, in Proceedings of the 2010 IEEE Region 8 International Conference on Computational Technologies in Electrical and Electronics Engineering (IEEE, 2010), pp. 187–188.
[CrossRef]

Ulliac, G.

N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, Appl. Phys. Lett. 96, 131103 (2010).
[CrossRef]

Yamada, K.

M. Kadota, K. Yamada, H. Kobayashi, and S. Tanaka, in Proceedings of the 18th IEEE International Symposium on the Applications of Ferroelectrics (IEEE, 2009), pp. 1–4.
[CrossRef]

Appl. Phys. B (1)

A. V. Tsarev, Appl. Phys. B 73, 495 (2001).

Appl. Phys. Lett. (2)

N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, Appl. Phys. Lett. 96, 131103 (2010).
[CrossRef]

M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, Appl. Phys. Lett. 87, 241101 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

H. Herrmann, K. Schäfer, and Ch. Schmidt, IEEE Photon. Technol. Lett. 10, 120 (1998).
[CrossRef]

IEEE Trans. Circuits Syst. Video Technol. (1)

C. Tsai, IEEE Trans. Circuits Syst. Video Technol. 26, 1072(1979).

J. Appl. Phys. (2)

F. Chen, J. Appl. Phys. 106, 081101 (2009).
[CrossRef]

X. S. Qian, J. P. Li, M. H. Lu, Y. Q. Lu, and Y. F. Chen, J. Appl. Phys. 106, 043107 (2009).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Optoelectron. Instrum. Data Proc. (1)

A. V. Tsarev and E. A. Kolosovsky, Optoelectron. Instrum. Data Proc. 6, 80 (2006).

Quantum Electron. (1)

A. V. Tsarev, Quantum Electron. 37, 393 (2007).
[CrossRef]

Other (4)

A. V. Tsarev, in Proceedings of the 2010 IEEE Region 8 International Conference on Computational Technologies in Electrical and Electronics Engineering (IEEE, 2010), pp. 187–188.
[CrossRef]

T. Nakazawa, M. Doi, S. Taniguchi, Y. Takasu, and M. Seino, in Proceedings of the Optical Fiber Communication Conference, Vol. 2 of 1998 OSA Technical Digest Series (Optical Society of America, 1998), paper PD1.

M. Kadota, K. Yamada, H. Kobayashi, and S. Tanaka, in Proceedings of the 18th IEEE International Symposium on the Applications of Ferroelectrics (IEEE, 2009), pp. 1–4.
[CrossRef]

RSoft Photonic CAD Suite, version 8.0, single license, www.rsoftdesign.com.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Noncollinear AO filter constituted by rows of holes: (1) channel waveguide, (2) planar waveguide, (3) piezoelectric substrate, (4) IDT, (5) SAW, (6) SAW absorber, (7) elementary reflector by row of holes, (8) first beam expander, and (9) second beam expander.

Fig. 2
Fig. 2

Measurement of power and phase characteristics of partial reflector. (a) Field distribution for hole diameter d = 0.2 μm . (b) Typical power and phase dependences of reflection and transmitting coefficients as a function of d for an incident angle of Ψ = 51 ° .

Fig. 3
Fig. 3

Optimization of the beam expander constituted by rows of holes: (a) reflected power ( P R ) and corresponding hole diameter (d) and (b) shift of reflector position ( δ X ) and variation of reflector angle (Ψ) to compensate for the phase shift due to variable hole diameter as a function of the reflector number (q).

Fig. 4
Fig. 4

Internal spectral response of AO filters at different SAW wavelengths Λ (in μm ) for parameters presented in Fig. 3. 2D FDTD simulation.

Tables (1)

Tables Icon

Table 1 Comparison of Acousto-Optic Filters

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

λ p = 2 D N m / p , p = p 0 , p = p 0 + 1 , p 0 = Integer [ 2 D N m / λ 0 ] + 1 ,
Δ λ = λ p 0 λ p 0 + 1 λ p 0 2 / ( 2 N m D ) .
Λ = λ 0 / ( 2 N m ( 1 q λ 0 / ( D N m ) ) .
Λ p = D / ( p 2 q ) .
Λ left = D / 2 , Λ right = D / 3.
δ λ 0.6 λ 0 2 / N m L .

Metrics