Abstract

The scanning delay line is a key component of time-domain optical coherence tomography systems. It has evolved since its inception toward higher scan rates and simpler implementation. However, existing approaches still suffer from drawbacks in terms of size, cost, and complexity, and they are not suitable for implementation using integrated optics. In this Letter, we report a rapid scanning delay line based on the thermo-optic effect of silicon at λ=1.3μm manufactured around a generic planar lightwave circuit technology. The reported device attained line scan rates of 10kHz and demonstrated a scan range of 0.95mm without suffering any observable loss of resolution (15µm FWHM) owing to depth-dependent chromatic dispersion.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, Opt. Lett. 17, 151 (1992).
    [CrossRef] [PubMed]
  2. G. J. Tearney, B. E. Bouma, S. A. Boppart, B. Golubovic, E. A. Swanson, and J. G. Fujimoto, Opt. Lett. 21, 1408 (1996).
    [CrossRef] [PubMed]
  3. Handbook of Optical Coherence Tomography, B.E.Bouma and G.J.Tearney, eds. (Informa Health Care, 2002).
  4. G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, Opt. Lett. 22, 1811 (1997).
    [CrossRef]
  5. W. Gao, Appl. Opt. 46, 986 (2007).
    [CrossRef] [PubMed]
  6. G. Cocorullo, M. Iodice, I. Rendina, and P. M. Sarro, IEEE Photon. Technol. Lett. 7, 363 (1995).
    [CrossRef]
  7. G. Ghosh, Appl. Phys. Lett. 66, 3570 (1995).
    [CrossRef]
  8. M. Asheghi, M. N. Touzelbaev, K. Goodson, Y. Leung, and S. Wong, J. Heat Transfer 120, 30 (1998).
    [CrossRef]

2007 (1)

1998 (1)

M. Asheghi, M. N. Touzelbaev, K. Goodson, Y. Leung, and S. Wong, J. Heat Transfer 120, 30 (1998).
[CrossRef]

1997 (1)

1996 (1)

1995 (2)

G. Cocorullo, M. Iodice, I. Rendina, and P. M. Sarro, IEEE Photon. Technol. Lett. 7, 363 (1995).
[CrossRef]

G. Ghosh, Appl. Phys. Lett. 66, 3570 (1995).
[CrossRef]

1992 (1)

Asheghi, M.

M. Asheghi, M. N. Touzelbaev, K. Goodson, Y. Leung, and S. Wong, J. Heat Transfer 120, 30 (1998).
[CrossRef]

Boppart, S. A.

Bouma, B. E.

Cocorullo, G.

G. Cocorullo, M. Iodice, I. Rendina, and P. M. Sarro, IEEE Photon. Technol. Lett. 7, 363 (1995).
[CrossRef]

Fujimoto, J. G.

Gao, W.

Ghosh, G.

G. Ghosh, Appl. Phys. Lett. 66, 3570 (1995).
[CrossRef]

Golubovic, B.

Goodson, K.

M. Asheghi, M. N. Touzelbaev, K. Goodson, Y. Leung, and S. Wong, J. Heat Transfer 120, 30 (1998).
[CrossRef]

Hee, M. R.

Huang, D.

Iodice, M.

G. Cocorullo, M. Iodice, I. Rendina, and P. M. Sarro, IEEE Photon. Technol. Lett. 7, 363 (1995).
[CrossRef]

Leung, Y.

M. Asheghi, M. N. Touzelbaev, K. Goodson, Y. Leung, and S. Wong, J. Heat Transfer 120, 30 (1998).
[CrossRef]

Lin, C. P.

Puliafito, C. A.

Rendina, I.

G. Cocorullo, M. Iodice, I. Rendina, and P. M. Sarro, IEEE Photon. Technol. Lett. 7, 363 (1995).
[CrossRef]

Sarro, P. M.

G. Cocorullo, M. Iodice, I. Rendina, and P. M. Sarro, IEEE Photon. Technol. Lett. 7, 363 (1995).
[CrossRef]

Swanson, E. A.

Tearney, G. J.

Touzelbaev, M. N.

M. Asheghi, M. N. Touzelbaev, K. Goodson, Y. Leung, and S. Wong, J. Heat Transfer 120, 30 (1998).
[CrossRef]

Wong, S.

M. Asheghi, M. N. Touzelbaev, K. Goodson, Y. Leung, and S. Wong, J. Heat Transfer 120, 30 (1998).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

G. Ghosh, Appl. Phys. Lett. 66, 3570 (1995).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

G. Cocorullo, M. Iodice, I. Rendina, and P. M. Sarro, IEEE Photon. Technol. Lett. 7, 363 (1995).
[CrossRef]

J. Heat Transfer (1)

M. Asheghi, M. N. Touzelbaev, K. Goodson, Y. Leung, and S. Wong, J. Heat Transfer 120, 30 (1998).
[CrossRef]

Opt. Lett. (3)

Other (1)

Handbook of Optical Coherence Tomography, B.E.Bouma and G.J.Tearney, eds. (Informa Health Care, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Fabricated chip with two individual delay stages mounted on a heat sink for thermal and optical characterization. The excitation and readout electronic board can be seen around it.

Fig. 2
Fig. 2

Iterative algorithm used to find the excitation signal for a specific device to compensate for nonlinearities and to extend the bandwidth of the device.

Fig. 3
Fig. 3

Frequency response of two membranes with dimensions 10 mm × 88 μm and 10 mm × 118 μm as measured using a small-signal sinusoidal excitation (symbols) and as computed from a linear model.

Fig. 4
Fig. 4

Calibration graph of a delay line with a 1-cm-long and 88-μm-wide membrane in a single-pass configuration for 10 kHz line rate excitation. The scan associated with rising temperatures is noted with circles, and the one with falling temperature is noted with squares.

Fig. 5
Fig. 5

Scan lines of a delay device with a 1-cm-long and 88-μm-wide membrane in a four-pass configuration as a function of the position of the reference mirror at a line rate of 2 kHz .

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

τ g = l 0 v g = l 0 d β d ω = l 0 c [ n eff + ω n eff ω + ω d n Si d ω ] .
d τ g d T = l 0 c [ d n Si d T + ω d 2 n Si d ω d T ] .

Metrics