Abstract

We propose and apply a theoretical description of a Raman amplifier based on the vector model of randomly birefringent fibers to the characterization of Raman polarizers. The Raman polarizer is a special type of Raman amplifier with the property of producing a highly repolarized beam when fed by relatively weak and unpolarized light.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Martinelli, M. Cirigliano, M. Ferrario, L. Marazzi, and P. Martelli, Opt. Express 17, 947 (2009).
    [CrossRef] [PubMed]
  2. Q. Lin and G. P. Agrawal, J. Opt. Soc. Am. B 20, 1616 (2003).
    [CrossRef]
  3. A. Galtarossa, L. Palmieri, M. Santagiustina, and L. Ursini, J. Lightwave Technol. 24, 4055 (2006).
    [CrossRef]
  4. P. K. A. Wai and C. R. Menyuk, J. Lightwave Technol. 14, 148 (1996).
    [CrossRef]
  5. V. V. Kozlov, J. Nuño, J. D. Ania-Castañón, and S. Wabnitz, http://arxiv.org/abs/1009.0446.

2009 (1)

2006 (1)

2003 (1)

1996 (1)

P. K. A. Wai and C. R. Menyuk, J. Lightwave Technol. 14, 148 (1996).
[CrossRef]

Agrawal, G. P.

Ania-Castañón, J. D.

V. V. Kozlov, J. Nuño, J. D. Ania-Castañón, and S. Wabnitz, http://arxiv.org/abs/1009.0446.

Cirigliano, M.

Ferrario, M.

Galtarossa, A.

Kozlov, V. V.

V. V. Kozlov, J. Nuño, J. D. Ania-Castañón, and S. Wabnitz, http://arxiv.org/abs/1009.0446.

Lin, Q.

Marazzi, L.

Martelli, P.

Martinelli, M.

Menyuk, C. R.

P. K. A. Wai and C. R. Menyuk, J. Lightwave Technol. 14, 148 (1996).
[CrossRef]

Nuño, J.

V. V. Kozlov, J. Nuño, J. D. Ania-Castañón, and S. Wabnitz, http://arxiv.org/abs/1009.0446.

Palmieri, L.

Santagiustina, M.

Ursini, L.

Wabnitz, S.

V. V. Kozlov, J. Nuño, J. D. Ania-Castañón, and S. Wabnitz, http://arxiv.org/abs/1009.0446.

Wai, P. K. A.

P. K. A. Wai and C. R. Menyuk, J. Lightwave Technol. 14, 148 (1996).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Opt. Express (1)

Other (1)

V. V. Kozlov, J. Nuño, J. D. Ania-Castañón, and S. Wabnitz, http://arxiv.org/abs/1009.0446.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Elements of the Raman matrix ( J R 1 , black solid curve; J R 2 , red dashed curve; and J R 3 , green dotted curve) as a function of distance in the fiber for L B ( ω p ) = 0.016 km and L c = 0.05 km . (Note that the black solid and red dashed curves coincide; i.e., J R 1 = J R 2 .)

Fig. 2
Fig. 2

DOP of the signal beam (black, solid curve) and alignment parameter A (red, dashed curve) as a function of correlation length L c for the four SOPs of the pump beam: (a)  ( 1 / 3 ) ( 1 , 1 , 1 ) , (b)  ( 1 , 0 , 0 ) , (c)  ( 0 , 1 , 0 ) , (d)  ( 0 , 0 , 1 ) . Here and in Figs. 3, 4, the value of the beat length L B ( ω p ) is indicated on the plots in kilometers. The two ellipses on plot (d) indicate one (of infinitely many) pair of points with equal PMD coefficients. Other parameters are (also used in Figs. 3, 4) input signal power, 1 μ W ; input pump power, 8 W ; g 0 = 0.6 ( W · km ) 1 ; γ = 1 ( W · km ) 1 ; α = 0.2 dB / km ; and L = 1.5 km .

Fig. 3
Fig. 3

DOP of the signal beam for two SOPs of the pump beam that either maximize (black, solid curve) or minimize (red, dashed curve) the signal DOP. For each value of L c , we perform a separate search for these two SOPs. The beat length is indicated on the plots in kilometers.

Fig. 4
Fig. 4

Average Raman polarizer gain as a function of the correlation length. The pump SOP is ( 1 , 0 , 0 ) , and the signal beam is initially unpolarized.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

( z + β ( ω s ) t ) S ( s ) = α s S ( s ) + γ ( ω s ) ( S ( s ) × J S ( s ) ( z ) S ( s ) + S ( s ) × J X ( z ) S ( p ) ) + ϵ s g 0 ( S 0 ( p ) J R 0 S ( s ) + S 0 ( s ) J R ( z ) S ( p ) ) .
z G 1 = 2 L c 1 ( G 1 G 2 ) , z G 2 = 2 L c 1 ( G 1 G 2 ) 4 Δ β ( ω s ) G 4 , z G 3 = 4 Δ β ( ω s ) G 4 , z G 4 = L c 1 G 4 + 2 Δ β ( ω s ) ( G 2 G 3 ) ,
z G 1 = 2 L c 1 ( G 1 G 2 ) + 2 Δ G 5 , z G 2 = 2 L c 1 ( G 1 G 2 ) 2 Δ + G 6 , z G 3 = 2 Δ + G 6 , z G 4 = 2 Δ G 5 , z G 5 = Δ ( G 4 G 1 ) L c 1 G 5 , z G 6 = Δ + ( G 2 G 3 ) L c 1 G 6 ,
( z + β ( ω s ) t ) S 0 ( s ) = α s S 0 ( s ) + g 0 ( J R 0 S 0 ( s ) S 0 ( p ) + J R 1 S 1 ( s ) S 1 ( p ) + J R 2 S 2 ( s ) S 2 ( p ) + J R 3 S 3 ( s ) S 3 ( p ) ) .
A S 1 ( s ) S 1 ( p ) + S 2 ( s ) S 2 ( p ) + S 3 ( s ) S 3 ( p ) S 0 ( s ) S 0 ( p ) ,

Metrics