Abstract

A Vernier-tuned distributed Bragg reflector (DBR) semiconductor laser is an effective monolithic approach for wide wavelength tunability, at the expense, however, of costly electron-beam lithography during fabrication. In this Letter, a tunable laser design with equivalent-chirp based, flat-top envelope grating reflectors is proposed that can be implemented easily by conventional two-beam interference lithography. The principle is described, and a detailed design shows uniform output power (0.08dB variation) and excellent side-mode suppression ratio (47dB minimum) within a wide tuning range (>32nm) through numerical simulation.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Buus and E. J. Murphy, J. Lightwave Technol. 24, 5(2006).
    [CrossRef]
  2. J. Zhang and N. Ansari, J. Lightwave Technol. 28, 228(2010).
    [CrossRef]
  3. V. Jayaraman, Z. Chuang, and L. A. Coldren, IEEE J. Quantum Electron. 29, 1824 (1993).
    [CrossRef]
  4. M. Gioannini and I. Montrosset, Proc. Inst. Elect. Eng., Opto-electron. 148, 13 (2001).
    [CrossRef]
  5. X. He, D. Huang, Y. Yu, D. N. Wang, W. Liu, and S. Jiang, IEEE Photonics Technol. Lett. 20, 1754 (2008).
    [CrossRef]
  6. J. Li, X. Chen, N. Zhou, J. Zhang, X. Huang, L. Li, H. Wang, Y. Lu, and H. Zhu, in Asia Communications and Photonics Conference and Exhibition, Technical Digest (CD) (Optical Society of America, 2009), paper TuD5.
  7. Y. Dai and J. Yao, IEEE J. Quantum Electron. 44, 938(2008).
    [CrossRef]
  8. Y. Dai and J. Yao, Opt. Express 16, 11216 (2008).
    [CrossRef] [PubMed]
  9. H. Li, M. Li, Y. Sheng, and J. E. Rothenberg, J. Lightwave Technol. 25, 2739 (2007).
    [CrossRef]
  10. G. P. Agrawal and A. H. Bobech, IEEE J. Quantum Electron. 24, 2407 (1988).
    [CrossRef]

2010 (1)

2008 (3)

X. He, D. Huang, Y. Yu, D. N. Wang, W. Liu, and S. Jiang, IEEE Photonics Technol. Lett. 20, 1754 (2008).
[CrossRef]

Y. Dai and J. Yao, IEEE J. Quantum Electron. 44, 938(2008).
[CrossRef]

Y. Dai and J. Yao, Opt. Express 16, 11216 (2008).
[CrossRef] [PubMed]

2007 (1)

2006 (1)

2001 (1)

M. Gioannini and I. Montrosset, Proc. Inst. Elect. Eng., Opto-electron. 148, 13 (2001).
[CrossRef]

1993 (1)

V. Jayaraman, Z. Chuang, and L. A. Coldren, IEEE J. Quantum Electron. 29, 1824 (1993).
[CrossRef]

1988 (1)

G. P. Agrawal and A. H. Bobech, IEEE J. Quantum Electron. 24, 2407 (1988).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal and A. H. Bobech, IEEE J. Quantum Electron. 24, 2407 (1988).
[CrossRef]

Ansari, N.

Bobech, A. H.

G. P. Agrawal and A. H. Bobech, IEEE J. Quantum Electron. 24, 2407 (1988).
[CrossRef]

Buus, J.

Chen, X.

J. Li, X. Chen, N. Zhou, J. Zhang, X. Huang, L. Li, H. Wang, Y. Lu, and H. Zhu, in Asia Communications and Photonics Conference and Exhibition, Technical Digest (CD) (Optical Society of America, 2009), paper TuD5.

Chuang, Z.

V. Jayaraman, Z. Chuang, and L. A. Coldren, IEEE J. Quantum Electron. 29, 1824 (1993).
[CrossRef]

Coldren, L. A.

V. Jayaraman, Z. Chuang, and L. A. Coldren, IEEE J. Quantum Electron. 29, 1824 (1993).
[CrossRef]

Dai, Y.

Y. Dai and J. Yao, IEEE J. Quantum Electron. 44, 938(2008).
[CrossRef]

Y. Dai and J. Yao, Opt. Express 16, 11216 (2008).
[CrossRef] [PubMed]

Gioannini, M.

M. Gioannini and I. Montrosset, Proc. Inst. Elect. Eng., Opto-electron. 148, 13 (2001).
[CrossRef]

He, X.

X. He, D. Huang, Y. Yu, D. N. Wang, W. Liu, and S. Jiang, IEEE Photonics Technol. Lett. 20, 1754 (2008).
[CrossRef]

Huang, D.

X. He, D. Huang, Y. Yu, D. N. Wang, W. Liu, and S. Jiang, IEEE Photonics Technol. Lett. 20, 1754 (2008).
[CrossRef]

Huang, X.

J. Li, X. Chen, N. Zhou, J. Zhang, X. Huang, L. Li, H. Wang, Y. Lu, and H. Zhu, in Asia Communications and Photonics Conference and Exhibition, Technical Digest (CD) (Optical Society of America, 2009), paper TuD5.

Jayaraman, V.

V. Jayaraman, Z. Chuang, and L. A. Coldren, IEEE J. Quantum Electron. 29, 1824 (1993).
[CrossRef]

Jiang, S.

X. He, D. Huang, Y. Yu, D. N. Wang, W. Liu, and S. Jiang, IEEE Photonics Technol. Lett. 20, 1754 (2008).
[CrossRef]

Li, H.

Li, J.

J. Li, X. Chen, N. Zhou, J. Zhang, X. Huang, L. Li, H. Wang, Y. Lu, and H. Zhu, in Asia Communications and Photonics Conference and Exhibition, Technical Digest (CD) (Optical Society of America, 2009), paper TuD5.

Li, L.

J. Li, X. Chen, N. Zhou, J. Zhang, X. Huang, L. Li, H. Wang, Y. Lu, and H. Zhu, in Asia Communications and Photonics Conference and Exhibition, Technical Digest (CD) (Optical Society of America, 2009), paper TuD5.

Li, M.

Liu, W.

X. He, D. Huang, Y. Yu, D. N. Wang, W. Liu, and S. Jiang, IEEE Photonics Technol. Lett. 20, 1754 (2008).
[CrossRef]

Lu, Y.

J. Li, X. Chen, N. Zhou, J. Zhang, X. Huang, L. Li, H. Wang, Y. Lu, and H. Zhu, in Asia Communications and Photonics Conference and Exhibition, Technical Digest (CD) (Optical Society of America, 2009), paper TuD5.

Montrosset, I.

M. Gioannini and I. Montrosset, Proc. Inst. Elect. Eng., Opto-electron. 148, 13 (2001).
[CrossRef]

Murphy, E. J.

Rothenberg, J. E.

Sheng, Y.

Wang, D. N.

X. He, D. Huang, Y. Yu, D. N. Wang, W. Liu, and S. Jiang, IEEE Photonics Technol. Lett. 20, 1754 (2008).
[CrossRef]

Wang, H.

J. Li, X. Chen, N. Zhou, J. Zhang, X. Huang, L. Li, H. Wang, Y. Lu, and H. Zhu, in Asia Communications and Photonics Conference and Exhibition, Technical Digest (CD) (Optical Society of America, 2009), paper TuD5.

Yao, J.

Y. Dai and J. Yao, Opt. Express 16, 11216 (2008).
[CrossRef] [PubMed]

Y. Dai and J. Yao, IEEE J. Quantum Electron. 44, 938(2008).
[CrossRef]

Yu, Y.

X. He, D. Huang, Y. Yu, D. N. Wang, W. Liu, and S. Jiang, IEEE Photonics Technol. Lett. 20, 1754 (2008).
[CrossRef]

Zhang, J.

J. Zhang and N. Ansari, J. Lightwave Technol. 28, 228(2010).
[CrossRef]

J. Li, X. Chen, N. Zhou, J. Zhang, X. Huang, L. Li, H. Wang, Y. Lu, and H. Zhu, in Asia Communications and Photonics Conference and Exhibition, Technical Digest (CD) (Optical Society of America, 2009), paper TuD5.

Zhou, N.

J. Li, X. Chen, N. Zhou, J. Zhang, X. Huang, L. Li, H. Wang, Y. Lu, and H. Zhu, in Asia Communications and Photonics Conference and Exhibition, Technical Digest (CD) (Optical Society of America, 2009), paper TuD5.

Zhu, H.

J. Li, X. Chen, N. Zhou, J. Zhang, X. Huang, L. Li, H. Wang, Y. Lu, and H. Zhu, in Asia Communications and Photonics Conference and Exhibition, Technical Digest (CD) (Optical Society of America, 2009), paper TuD5.

IEEE J. Quantum Electron. (3)

V. Jayaraman, Z. Chuang, and L. A. Coldren, IEEE J. Quantum Electron. 29, 1824 (1993).
[CrossRef]

Y. Dai and J. Yao, IEEE J. Quantum Electron. 44, 938(2008).
[CrossRef]

G. P. Agrawal and A. H. Bobech, IEEE J. Quantum Electron. 24, 2407 (1988).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

X. He, D. Huang, Y. Yu, D. N. Wang, W. Liu, and S. Jiang, IEEE Photonics Technol. Lett. 20, 1754 (2008).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Express (1)

Proc. Inst. Elect. Eng., Opto-electron. (1)

M. Gioannini and I. Montrosset, Proc. Inst. Elect. Eng., Opto-electron. 148, 13 (2001).
[CrossRef]

Other (1)

J. Li, X. Chen, N. Zhou, J. Zhang, X. Huang, L. Li, H. Wang, Y. Lu, and H. Zhu, in Asia Communications and Photonics Conference and Exhibition, Technical Digest (CD) (Optical Society of America, 2009), paper TuD5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Gratings [within one section ( P 0 )] designed by (a) phase-only sampling and (b) equivalent-chirp technology.

Fig. 2
Fig. 2

(a) Spectrum of the equivalent-chirp grating ( R 1 ). (b) Spectra of R 1 and R 2 .

Fig. 3
Fig. 3

(a) Spectra of R 1 × R 2 when R 1 is tuned to the five lasing points and R 2 is kept unchanged. (b) The floor level of SMSR of the five lasing points in (a).

Fig. 4
Fig. 4

The calculated PI curves of our DBR laser, corresponding to the five lasing wavelengths shown in Fig. 3a.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

s ( z ) = s 0 [ z φ ( z ) 2 π P ] ,
Δ n = 1 2 s ( z ) exp ( j 2 π z Λ ) + c.c. = 1 2 F 1 exp [ j φ ( z ) ] × exp ( j 2 π z Λ 1 ) + c.c. + m 1 1 2 F m exp [ j m φ ( z ) ] × exp ( j 2 π z Λ m ) + c.c.,
SMSR ln [ R 1 × R 2 ( λ S ) / R 1 × R 2 ( λ 0 ) ] ln [ R 1 × R 2 ( λ 0 ) ] × 10 4 ( mw 1 ) × P OUT ( mw ) ,

Metrics