Abstract

Compensation of the intracavity dispersion in the mode-locked oscillator is known to be one of the most important factors for ultrashort pulse generation. However, recent investigations of a Yb-doped fiber mode-locked oscillator revealed that precise third-order dispersion (TOD) compensation is not always necessary for ultrashort pulse generation, owing to the strong nonlinearity that compensates residual TOD without reducing its spectral bandwidth. The origin of the nonlinear TOD compensation has remained unclear. To investigate the process in detail, we studied the pulse evolution inside a 30fs Yb-doped fiber mode-locked oscillator both experimentally and numerically, and we found that the nonlinear phase shift with a temporally asymmetric pulse shape introduces an appropriate amount of TOD that exactly cancels the residual cavity dispersion.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, IEEE J. Quantum Electron. 1, 2 (1995).
    [CrossRef]
  2. X. Zhou, D. Yoshitomi, Y. Kobayashi, and K. Torizuka, Opt. Express 16, 7055 (2008).
    [CrossRef] [PubMed]
  3. K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, Opt. Lett. 18, 1080 (1993).
    [CrossRef] [PubMed]
  4. F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, Phys. Rev. Lett. 92, 213902 (2004).
    [CrossRef] [PubMed]
  5. A. Chong, J. Buckley, W. Renninger, and F. W. Wise, Opt. Express 14, 10095 (2006).
    [CrossRef] [PubMed]
  6. T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevičius, M. E. Fermann, and J. Ye, Nat. Photon. 2, 355 (2008).
    [CrossRef]
  7. D. C. Yost, T. R. Schibli, and J. Ye, Opt. Lett. 33, 1099 (2008).
    [CrossRef] [PubMed]
  8. F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye, Opt. Lett. 34, 1330 (2009).
    [CrossRef] [PubMed]
  9. J. R. Buckley, S. W. Clark, and F. W. Wise, Opt. Lett. 31, 1340 (2006).
    [CrossRef] [PubMed]
  10. M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, Phys. Rev. Lett. 84, 6010 (2000).
    [CrossRef] [PubMed]
  11. D. N. Schimpf, J. Limpert, and A. Tünnermann, Opt. Express 15, 16945 (2007).
    [CrossRef] [PubMed]
  12. L. Shah, Z. Liu, I. Hartl, G. Imeshev, G. Cho, and M. E. Fermann, Opt. Express 13, 4717 (2005).
    [CrossRef] [PubMed]
  13. M. Hofer, M. E. Fermann, F. Haberl, M. H. Ober, and A. J. Schmidt, Opt. Lett. 16, 502 (1991).
    [CrossRef] [PubMed]
  14. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed.(Academic, 2007).

2009 (1)

2008 (3)

2007 (1)

2006 (2)

2005 (1)

2004 (1)

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

2000 (1)

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, Phys. Rev. Lett. 84, 6010 (2000).
[CrossRef] [PubMed]

1995 (1)

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, IEEE J. Quantum Electron. 1, 2 (1995).
[CrossRef]

1993 (1)

1991 (1)

Adler, F.

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed.(Academic, 2007).

Barber, P. R.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, IEEE J. Quantum Electron. 1, 2 (1995).
[CrossRef]

Buckley, J.

Buckley, J. R.

J. R. Buckley, S. W. Clark, and F. W. Wise, Opt. Lett. 31, 1340 (2006).
[CrossRef] [PubMed]

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Carman, R. J.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, IEEE J. Quantum Electron. 1, 2 (1995).
[CrossRef]

Cho, G.

Chong, A.

Clark, S. W.

Clark, W. G.

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Cossel, K. C.

Dawes, J. M.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, IEEE J. Quantum Electron. 1, 2 (1995).
[CrossRef]

Dudley, J. M.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, Phys. Rev. Lett. 84, 6010 (2000).
[CrossRef] [PubMed]

Fermann, M. E.

Haberl, F.

Hanna, D. C.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, IEEE J. Quantum Electron. 1, 2 (1995).
[CrossRef]

Hartl, I.

Harvey, J. D.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, Phys. Rev. Lett. 84, 6010 (2000).
[CrossRef] [PubMed]

Haus, H. A.

Hofer, M.

Ilday, F. Ö.

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Imeshev, G.

Ippen, E. P.

Kobayashi, Y.

Kruglov, V. I.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, Phys. Rev. Lett. 84, 6010 (2000).
[CrossRef] [PubMed]

Limpert, J.

Liu, Z.

Mackechnie, C. J.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, IEEE J. Quantum Electron. 1, 2 (1995).
[CrossRef]

Marcinkevicius, A.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevičius, M. E. Fermann, and J. Ye, Nat. Photon. 2, 355 (2008).
[CrossRef]

Martin, M. J.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevičius, M. E. Fermann, and J. Ye, Nat. Photon. 2, 355 (2008).
[CrossRef]

Nelson, L. E.

Ober, M. H.

Pask, H. M.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, IEEE J. Quantum Electron. 1, 2 (1995).
[CrossRef]

Renninger, W.

Schibli, T. R.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevičius, M. E. Fermann, and J. Ye, Nat. Photon. 2, 355 (2008).
[CrossRef]

D. C. Yost, T. R. Schibli, and J. Ye, Opt. Lett. 33, 1099 (2008).
[CrossRef] [PubMed]

Schimpf, D. N.

Schmidt, A. J.

Shah, L.

Tamura, K.

Thomsen, B. C.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, Phys. Rev. Lett. 84, 6010 (2000).
[CrossRef] [PubMed]

Thorpe, M. J.

Torizuka, K.

Tropper, A. C.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, IEEE J. Quantum Electron. 1, 2 (1995).
[CrossRef]

Tünnermann, A.

Wise, F. W.

Ye, J.

Yoshitomi, D.

Yost, D. C.

D. C. Yost, T. R. Schibli, and J. Ye, Opt. Lett. 33, 1099 (2008).
[CrossRef] [PubMed]

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevičius, M. E. Fermann, and J. Ye, Nat. Photon. 2, 355 (2008).
[CrossRef]

Zhou, X.

IEEE J. Quantum Electron. (1)

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, IEEE J. Quantum Electron. 1, 2 (1995).
[CrossRef]

Nat. Photon. (1)

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevičius, M. E. Fermann, and J. Ye, Nat. Photon. 2, 355 (2008).
[CrossRef]

Opt. Express (4)

Opt. Lett. (5)

Phys. Rev. Lett. (2)

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, Phys. Rev. Lett. 84, 6010 (2000).
[CrossRef] [PubMed]

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed.(Academic, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the Yb fiber oscillator system. WDM, wavelength division multiplexing mixer; SMF, single mode fiber; YDF, ytterbium-doped fiber; PBS, polarized beam splitter; BS, beam splitter. Inset, retrieved pulses from FROG for output 2.

Fig. 2
Fig. 2

GDD and TOD in the oscillator. Positions (A), (B), and (C) are shown in Fig. 1. Filled circles show the experimental data; open circles show estimated values.

Fig. 3
Fig. 3

(a) Temporal pulse shape in the YDF, assuming Gaussian spectrum. (b) Spectral phase: solid curve shows initial spectral phase, dotted curve shows phase after SPM introduced, dashed curve shows phase shift caused by SPM.

Fig. 4
Fig. 4

(a) Temporal pulse shape in the YDF. (b) Temporal phase shift (dashed curve) caused by SPM within the region inside the dotted line in (a) and instantaneous frequency (solid line). (c) Group delay versus angular frequency obtained from (b). (d) Spectral phase obtained from (c).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ϕ ( ω ) = ϕ 0 + ϕ 1 ( ω ω 0 ) + ϕ 2 2 ( ω ω 0 ) 2 + ϕ 3 6 ( ω ω 0 ) 3 ,

Metrics