Abstract

We explore theoretically and numerically the temporal contrast limitation of a self-referenced spectral interferometry measurement. An experimental confirmation is given by characterization and fine compression of hollow-core fiber generated sub-15fs pulses, yielding an accurately measured coherent contrast of 50dB on a ±400fs time range.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Oksenhendler, S. Coudreau, N. Forget, V. Crozatier, S. Grabielle, R. Herzog, O. Gobert, and D. Kaplan, Appl. Phys. B 99, 7 (2010).
    [CrossRef]
  2. N. Minkovski, G. I. Petrov, S. M. Saltiel, O. Albert, and J. Etchepare, J. Opt. Soc. Am. B 21, 1659 (2004).
    [CrossRef]
  3. A. Jullien, L. Canova, O. Albert, D. Boschetto, L. Antonucci, Y.-H. Cha, J. P. Rousseau, P. Chaudet, G. Chriaux, J. Etchepare, S. Kourtev, N. Minkowski, and S. M. Saltiel, Appl. Phys. B 87, 595 (2007).
    [CrossRef]
  4. L. Lepetit, G. Chériaux, and M. Joffre, J. Opt. Soc. Am. B 12, 2467 (1995).
    [CrossRef]
  5. C. Iaconis and I. A. Walmsley, Opt. Lett. 23, 792 (1998).
    [CrossRef]
  6. F. Verluise, V. Laude, Z. Cheng, Ch. Spielmann, and P. Tournois, Opt. Lett. 25, 575 (2000).
    [CrossRef]
  7. A. Jullien, X. Chen, A. Ricci, J.-P. Rousseau, R. Lopez-Martens, L. P. Ramirez, D. Papadopoulos, A. Pellegrina, F. Druon, and P. Georges, “High-fidelity frontend for high-power, high temporal quality few-cycle lasers,” Appl. Phys. B (to be published).

2010

T. Oksenhendler, S. Coudreau, N. Forget, V. Crozatier, S. Grabielle, R. Herzog, O. Gobert, and D. Kaplan, Appl. Phys. B 99, 7 (2010).
[CrossRef]

2007

A. Jullien, L. Canova, O. Albert, D. Boschetto, L. Antonucci, Y.-H. Cha, J. P. Rousseau, P. Chaudet, G. Chriaux, J. Etchepare, S. Kourtev, N. Minkowski, and S. M. Saltiel, Appl. Phys. B 87, 595 (2007).
[CrossRef]

2004

2000

1998

1995

Albert, O.

A. Jullien, L. Canova, O. Albert, D. Boschetto, L. Antonucci, Y.-H. Cha, J. P. Rousseau, P. Chaudet, G. Chriaux, J. Etchepare, S. Kourtev, N. Minkowski, and S. M. Saltiel, Appl. Phys. B 87, 595 (2007).
[CrossRef]

N. Minkovski, G. I. Petrov, S. M. Saltiel, O. Albert, and J. Etchepare, J. Opt. Soc. Am. B 21, 1659 (2004).
[CrossRef]

Antonucci, L.

A. Jullien, L. Canova, O. Albert, D. Boschetto, L. Antonucci, Y.-H. Cha, J. P. Rousseau, P. Chaudet, G. Chriaux, J. Etchepare, S. Kourtev, N. Minkowski, and S. M. Saltiel, Appl. Phys. B 87, 595 (2007).
[CrossRef]

Boschetto, D.

A. Jullien, L. Canova, O. Albert, D. Boschetto, L. Antonucci, Y.-H. Cha, J. P. Rousseau, P. Chaudet, G. Chriaux, J. Etchepare, S. Kourtev, N. Minkowski, and S. M. Saltiel, Appl. Phys. B 87, 595 (2007).
[CrossRef]

Canova, L.

A. Jullien, L. Canova, O. Albert, D. Boschetto, L. Antonucci, Y.-H. Cha, J. P. Rousseau, P. Chaudet, G. Chriaux, J. Etchepare, S. Kourtev, N. Minkowski, and S. M. Saltiel, Appl. Phys. B 87, 595 (2007).
[CrossRef]

Cha, Y.-H.

A. Jullien, L. Canova, O. Albert, D. Boschetto, L. Antonucci, Y.-H. Cha, J. P. Rousseau, P. Chaudet, G. Chriaux, J. Etchepare, S. Kourtev, N. Minkowski, and S. M. Saltiel, Appl. Phys. B 87, 595 (2007).
[CrossRef]

Chaudet, P.

A. Jullien, L. Canova, O. Albert, D. Boschetto, L. Antonucci, Y.-H. Cha, J. P. Rousseau, P. Chaudet, G. Chriaux, J. Etchepare, S. Kourtev, N. Minkowski, and S. M. Saltiel, Appl. Phys. B 87, 595 (2007).
[CrossRef]

Chen, X.

A. Jullien, X. Chen, A. Ricci, J.-P. Rousseau, R. Lopez-Martens, L. P. Ramirez, D. Papadopoulos, A. Pellegrina, F. Druon, and P. Georges, “High-fidelity frontend for high-power, high temporal quality few-cycle lasers,” Appl. Phys. B (to be published).

Cheng, Z.

Chériaux, G.

Chriaux, G.

A. Jullien, L. Canova, O. Albert, D. Boschetto, L. Antonucci, Y.-H. Cha, J. P. Rousseau, P. Chaudet, G. Chriaux, J. Etchepare, S. Kourtev, N. Minkowski, and S. M. Saltiel, Appl. Phys. B 87, 595 (2007).
[CrossRef]

Coudreau, S.

T. Oksenhendler, S. Coudreau, N. Forget, V. Crozatier, S. Grabielle, R. Herzog, O. Gobert, and D. Kaplan, Appl. Phys. B 99, 7 (2010).
[CrossRef]

Crozatier, V.

T. Oksenhendler, S. Coudreau, N. Forget, V. Crozatier, S. Grabielle, R. Herzog, O. Gobert, and D. Kaplan, Appl. Phys. B 99, 7 (2010).
[CrossRef]

Druon, F.

A. Jullien, X. Chen, A. Ricci, J.-P. Rousseau, R. Lopez-Martens, L. P. Ramirez, D. Papadopoulos, A. Pellegrina, F. Druon, and P. Georges, “High-fidelity frontend for high-power, high temporal quality few-cycle lasers,” Appl. Phys. B (to be published).

Etchepare, J.

A. Jullien, L. Canova, O. Albert, D. Boschetto, L. Antonucci, Y.-H. Cha, J. P. Rousseau, P. Chaudet, G. Chriaux, J. Etchepare, S. Kourtev, N. Minkowski, and S. M. Saltiel, Appl. Phys. B 87, 595 (2007).
[CrossRef]

N. Minkovski, G. I. Petrov, S. M. Saltiel, O. Albert, and J. Etchepare, J. Opt. Soc. Am. B 21, 1659 (2004).
[CrossRef]

Forget, N.

T. Oksenhendler, S. Coudreau, N. Forget, V. Crozatier, S. Grabielle, R. Herzog, O. Gobert, and D. Kaplan, Appl. Phys. B 99, 7 (2010).
[CrossRef]

Georges, P.

A. Jullien, X. Chen, A. Ricci, J.-P. Rousseau, R. Lopez-Martens, L. P. Ramirez, D. Papadopoulos, A. Pellegrina, F. Druon, and P. Georges, “High-fidelity frontend for high-power, high temporal quality few-cycle lasers,” Appl. Phys. B (to be published).

Gobert, O.

T. Oksenhendler, S. Coudreau, N. Forget, V. Crozatier, S. Grabielle, R. Herzog, O. Gobert, and D. Kaplan, Appl. Phys. B 99, 7 (2010).
[CrossRef]

Grabielle, S.

T. Oksenhendler, S. Coudreau, N. Forget, V. Crozatier, S. Grabielle, R. Herzog, O. Gobert, and D. Kaplan, Appl. Phys. B 99, 7 (2010).
[CrossRef]

Herzog, R.

T. Oksenhendler, S. Coudreau, N. Forget, V. Crozatier, S. Grabielle, R. Herzog, O. Gobert, and D. Kaplan, Appl. Phys. B 99, 7 (2010).
[CrossRef]

Iaconis, C.

Joffre, M.

Jullien, A.

A. Jullien, L. Canova, O. Albert, D. Boschetto, L. Antonucci, Y.-H. Cha, J. P. Rousseau, P. Chaudet, G. Chriaux, J. Etchepare, S. Kourtev, N. Minkowski, and S. M. Saltiel, Appl. Phys. B 87, 595 (2007).
[CrossRef]

A. Jullien, X. Chen, A. Ricci, J.-P. Rousseau, R. Lopez-Martens, L. P. Ramirez, D. Papadopoulos, A. Pellegrina, F. Druon, and P. Georges, “High-fidelity frontend for high-power, high temporal quality few-cycle lasers,” Appl. Phys. B (to be published).

Kaplan, D.

T. Oksenhendler, S. Coudreau, N. Forget, V. Crozatier, S. Grabielle, R. Herzog, O. Gobert, and D. Kaplan, Appl. Phys. B 99, 7 (2010).
[CrossRef]

Kourtev, S.

A. Jullien, L. Canova, O. Albert, D. Boschetto, L. Antonucci, Y.-H. Cha, J. P. Rousseau, P. Chaudet, G. Chriaux, J. Etchepare, S. Kourtev, N. Minkowski, and S. M. Saltiel, Appl. Phys. B 87, 595 (2007).
[CrossRef]

Laude, V.

Lepetit, L.

Lopez-Martens, R.

A. Jullien, X. Chen, A. Ricci, J.-P. Rousseau, R. Lopez-Martens, L. P. Ramirez, D. Papadopoulos, A. Pellegrina, F. Druon, and P. Georges, “High-fidelity frontend for high-power, high temporal quality few-cycle lasers,” Appl. Phys. B (to be published).

Minkovski, N.

Minkowski, N.

A. Jullien, L. Canova, O. Albert, D. Boschetto, L. Antonucci, Y.-H. Cha, J. P. Rousseau, P. Chaudet, G. Chriaux, J. Etchepare, S. Kourtev, N. Minkowski, and S. M. Saltiel, Appl. Phys. B 87, 595 (2007).
[CrossRef]

Oksenhendler, T.

T. Oksenhendler, S. Coudreau, N. Forget, V. Crozatier, S. Grabielle, R. Herzog, O. Gobert, and D. Kaplan, Appl. Phys. B 99, 7 (2010).
[CrossRef]

Papadopoulos, D.

A. Jullien, X. Chen, A. Ricci, J.-P. Rousseau, R. Lopez-Martens, L. P. Ramirez, D. Papadopoulos, A. Pellegrina, F. Druon, and P. Georges, “High-fidelity frontend for high-power, high temporal quality few-cycle lasers,” Appl. Phys. B (to be published).

Pellegrina, A.

A. Jullien, X. Chen, A. Ricci, J.-P. Rousseau, R. Lopez-Martens, L. P. Ramirez, D. Papadopoulos, A. Pellegrina, F. Druon, and P. Georges, “High-fidelity frontend for high-power, high temporal quality few-cycle lasers,” Appl. Phys. B (to be published).

Petrov, G. I.

Ramirez, L. P.

A. Jullien, X. Chen, A. Ricci, J.-P. Rousseau, R. Lopez-Martens, L. P. Ramirez, D. Papadopoulos, A. Pellegrina, F. Druon, and P. Georges, “High-fidelity frontend for high-power, high temporal quality few-cycle lasers,” Appl. Phys. B (to be published).

Ricci, A.

A. Jullien, X. Chen, A. Ricci, J.-P. Rousseau, R. Lopez-Martens, L. P. Ramirez, D. Papadopoulos, A. Pellegrina, F. Druon, and P. Georges, “High-fidelity frontend for high-power, high temporal quality few-cycle lasers,” Appl. Phys. B (to be published).

Rousseau, J. P.

A. Jullien, L. Canova, O. Albert, D. Boschetto, L. Antonucci, Y.-H. Cha, J. P. Rousseau, P. Chaudet, G. Chriaux, J. Etchepare, S. Kourtev, N. Minkowski, and S. M. Saltiel, Appl. Phys. B 87, 595 (2007).
[CrossRef]

Rousseau, J.-P.

A. Jullien, X. Chen, A. Ricci, J.-P. Rousseau, R. Lopez-Martens, L. P. Ramirez, D. Papadopoulos, A. Pellegrina, F. Druon, and P. Georges, “High-fidelity frontend for high-power, high temporal quality few-cycle lasers,” Appl. Phys. B (to be published).

Saltiel, S. M.

A. Jullien, L. Canova, O. Albert, D. Boschetto, L. Antonucci, Y.-H. Cha, J. P. Rousseau, P. Chaudet, G. Chriaux, J. Etchepare, S. Kourtev, N. Minkowski, and S. M. Saltiel, Appl. Phys. B 87, 595 (2007).
[CrossRef]

N. Minkovski, G. I. Petrov, S. M. Saltiel, O. Albert, and J. Etchepare, J. Opt. Soc. Am. B 21, 1659 (2004).
[CrossRef]

Spielmann, Ch.

Tournois, P.

Verluise, F.

Walmsley, I. A.

Appl. Phys. B

T. Oksenhendler, S. Coudreau, N. Forget, V. Crozatier, S. Grabielle, R. Herzog, O. Gobert, and D. Kaplan, Appl. Phys. B 99, 7 (2010).
[CrossRef]

A. Jullien, L. Canova, O. Albert, D. Boschetto, L. Antonucci, Y.-H. Cha, J. P. Rousseau, P. Chaudet, G. Chriaux, J. Etchepare, S. Kourtev, N. Minkowski, and S. M. Saltiel, Appl. Phys. B 87, 595 (2007).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Lett.

Other

A. Jullien, X. Chen, A. Ricci, J.-P. Rousseau, R. Lopez-Martens, L. P. Ramirez, D. Papadopoulos, A. Pellegrina, F. Druon, and P. Georges, “High-fidelity frontend for high-power, high temporal quality few-cycle lasers,” Appl. Phys. B (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Thin dashed curves, one-shot SRSI extracted pulse spectral phase (top) and intensity (bottom). Thick solid curves, same quantities averaged over 1000 single-shot measurements. Thick dashed curve, XPW extracted spectral intensity. Thick dotted curve, spectrometer noise level. Gray area, apodizing window. Inset, temporal reconstruction (dynamics 50 dB ).

Fig. 2
Fig. 2

SRSI device setup—arrows represent polarization directions.

Fig. 3
Fig. 3

Spectral SRSI measurement averaged over 30 single-shot measurements. Top, spectral phase before (dashed curve) and after (solid curve) optimization. Bottom, input (solid curve) and XPW (dashed curve) spectra; spectrometer noise level (dotted curve). Gray area, apodizing window.

Fig. 4
Fig. 4

SRSI temporal measurement before (dashed black curve) and after (solid black curve) fine optimization, compared with the FTL (plain gray area) and the simulated level of noise, 50 dB (dotted black curve).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

S ( ν ) = | E ˜ I ( ν ) | 2 + | E ˜ X ( ν ) | 2 + 2 | E ˜ I ( ν ) E ˜ X ( ν ) | cos ( φ I ( ν ) φ X ( ν ) 2 π ν τ ) + N ( ν ) ,
S 0 m = S 0 G ˜ + N G ˜ ,
f m = f G ˜ + ( N e 2 i π ν τ ) G ˜ .
| E ˜ I m | = S 0 m + 2 | f m | 2 S 0 m 2 | f m | 2 ,
| E ˜ X m | = S 0 m + 2 | f m | 2 + S 0 m 2 | f m | 2 .
E ˜ I m E ˜ I G ˜ ( 1 + ( N e 2 i π ν τ ) G ˜ 2 E ˜ I G ˜ × | E ˜ X | G ˜ ) .
C t F × N × SNR ,
σ T = [ T 2 T 2 t 2 | E ( t ) | 2 d t ] 1 2 .

Metrics