Abstract

We propose a modulation-free technique for frequency stabilization of an external-cavity diode laser (ECDL) by using a phase-difference biased Sagnac interferometer to produce dispersion spectroscopic error signals. A half-wave plate and a total internal reflection prism are inserted into the loop to provide a phase-difference bias between the clockwise and counterclockwise beams with perpendicular polarizations, instead of the previous method with misaligned optical paths. In the experiments, the frequency of the Littman–Metcalf configuration ECDL is locked at the transition of the Rb atomic vapor, and the frequency fluctuation is suppressed from 8 to less than 0.5MHz peak to peak. It is shown that this scheme is simple, robust, low cost, and it shows promise for use in a variety of related applications.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Yanagawa, S. Saito, S. Machida, Y. Yamamoto, and Y. Noguchi, Appl. Phys. Lett. 47, 1036 (1985).
    [CrossRef]
  2. J. E. Debs, N. P. Robins, A. Lance, M. B. Kruger, and J. D. Close, Appl. Opt. 47, 5163 (2008).
    [CrossRef] [PubMed]
  3. K. L. Corwin, Z.-T. Lu, C. F. Hand, R. J. Epstein, and C. E. Wieman, Appl. Opt. 37, 3295 (1998).
    [CrossRef]
  4. G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadzki, Appl. Phys. B 75, 613 (2002).
    [CrossRef]
  5. C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, J. Phys. B 35, 5141 (2002).
    [CrossRef]
  6. Y. Yoshikawa, T. Umeki, T. Mukae, Y. Torii, and T. Kuga, Appl. Opt. 42, 6645 (2003).
    [CrossRef] [PubMed]
  7. N. P. Robins, B. J. J. Slagmolen, D. A. Shaddock, J. D. Close, and M. B. Gray, Opt. Lett. 27, 1905 (2002).
    [CrossRef]
  8. G. Jundt, G. T. Purves, C. S. Adams, and I. G. Hughes, Eur. Phys. J. D 27, 273 (2003).
    [CrossRef]
  9. G. T. Purves, “Absorption and dispersion in atomic vapours: applications to interferometery,” Ph.D. dissertation (University of Durham, 2006), http://massey.dur.ac.uk/resources/gtpurves/index.html.
  10. G. T. Purves, C. S. Adams, and I. G. Hughes, Phys. Rev. A 74, 023805 (2006).
    [CrossRef]
  11. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge U. Press, 1999), Chap. 1.
    [PubMed]

2008 (1)

2006 (1)

G. T. Purves, C. S. Adams, and I. G. Hughes, Phys. Rev. A 74, 023805 (2006).
[CrossRef]

2003 (2)

Y. Yoshikawa, T. Umeki, T. Mukae, Y. Torii, and T. Kuga, Appl. Opt. 42, 6645 (2003).
[CrossRef] [PubMed]

G. Jundt, G. T. Purves, C. S. Adams, and I. G. Hughes, Eur. Phys. J. D 27, 273 (2003).
[CrossRef]

2002 (3)

G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadzki, Appl. Phys. B 75, 613 (2002).
[CrossRef]

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, J. Phys. B 35, 5141 (2002).
[CrossRef]

N. P. Robins, B. J. J. Slagmolen, D. A. Shaddock, J. D. Close, and M. B. Gray, Opt. Lett. 27, 1905 (2002).
[CrossRef]

1998 (1)

1985 (1)

T. Yanagawa, S. Saito, S. Machida, Y. Yamamoto, and Y. Noguchi, Appl. Phys. Lett. 47, 1036 (1985).
[CrossRef]

Adams, C. S.

G. T. Purves, C. S. Adams, and I. G. Hughes, Phys. Rev. A 74, 023805 (2006).
[CrossRef]

G. Jundt, G. T. Purves, C. S. Adams, and I. G. Hughes, Eur. Phys. J. D 27, 273 (2003).
[CrossRef]

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, J. Phys. B 35, 5141 (2002).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge U. Press, 1999), Chap. 1.
[PubMed]

Close, J. D.

Corwin, K. L.

Cox, S. G.

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, J. Phys. B 35, 5141 (2002).
[CrossRef]

Debs, J. E.

Epstein, R. J.

Gawlik, W.

G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadzki, Appl. Phys. B 75, 613 (2002).
[CrossRef]

Gray, M. B.

Griffin, P. F.

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, J. Phys. B 35, 5141 (2002).
[CrossRef]

Hand, C. F.

Hughes, I. G.

G. T. Purves, C. S. Adams, and I. G. Hughes, Phys. Rev. A 74, 023805 (2006).
[CrossRef]

G. Jundt, G. T. Purves, C. S. Adams, and I. G. Hughes, Eur. Phys. J. D 27, 273 (2003).
[CrossRef]

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, J. Phys. B 35, 5141 (2002).
[CrossRef]

Jundt, G.

G. Jundt, G. T. Purves, C. S. Adams, and I. G. Hughes, Eur. Phys. J. D 27, 273 (2003).
[CrossRef]

Kruger, M. B.

Kuga, T.

Lance, A.

Lu, Z.-T.

Machida, S.

T. Yanagawa, S. Saito, S. Machida, Y. Yamamoto, and Y. Noguchi, Appl. Phys. Lett. 47, 1036 (1985).
[CrossRef]

Mukae, T.

Noguchi, Y.

T. Yanagawa, S. Saito, S. Machida, Y. Yamamoto, and Y. Noguchi, Appl. Phys. Lett. 47, 1036 (1985).
[CrossRef]

Pearman, C. P.

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, J. Phys. B 35, 5141 (2002).
[CrossRef]

Purves, G. T.

G. T. Purves, C. S. Adams, and I. G. Hughes, Phys. Rev. A 74, 023805 (2006).
[CrossRef]

G. Jundt, G. T. Purves, C. S. Adams, and I. G. Hughes, Eur. Phys. J. D 27, 273 (2003).
[CrossRef]

G. T. Purves, “Absorption and dispersion in atomic vapours: applications to interferometery,” Ph.D. dissertation (University of Durham, 2006), http://massey.dur.ac.uk/resources/gtpurves/index.html.

Robins, N. P.

Saito, S.

T. Yanagawa, S. Saito, S. Machida, Y. Yamamoto, and Y. Noguchi, Appl. Phys. Lett. 47, 1036 (1985).
[CrossRef]

Shaddock, D. A.

Slagmolen, B. J. J.

Smith, D. A.

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, J. Phys. B 35, 5141 (2002).
[CrossRef]

Torii, Y.

Umeki, T.

Wasik, G.

G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadzki, Appl. Phys. B 75, 613 (2002).
[CrossRef]

Wieman, C. E.

Wolf, E.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge U. Press, 1999), Chap. 1.
[PubMed]

Yamamoto, Y.

T. Yanagawa, S. Saito, S. Machida, Y. Yamamoto, and Y. Noguchi, Appl. Phys. Lett. 47, 1036 (1985).
[CrossRef]

Yanagawa, T.

T. Yanagawa, S. Saito, S. Machida, Y. Yamamoto, and Y. Noguchi, Appl. Phys. Lett. 47, 1036 (1985).
[CrossRef]

Yoshikawa, Y.

Zachorowski, J.

G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadzki, Appl. Phys. B 75, 613 (2002).
[CrossRef]

Zawadzki, W.

G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadzki, Appl. Phys. B 75, 613 (2002).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. B (1)

G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadzki, Appl. Phys. B 75, 613 (2002).
[CrossRef]

Appl. Phys. Lett. (1)

T. Yanagawa, S. Saito, S. Machida, Y. Yamamoto, and Y. Noguchi, Appl. Phys. Lett. 47, 1036 (1985).
[CrossRef]

Eur. Phys. J. D (1)

G. Jundt, G. T. Purves, C. S. Adams, and I. G. Hughes, Eur. Phys. J. D 27, 273 (2003).
[CrossRef]

J. Phys. B (1)

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, J. Phys. B 35, 5141 (2002).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. A (1)

G. T. Purves, C. S. Adams, and I. G. Hughes, Phys. Rev. A 74, 023805 (2006).
[CrossRef]

Other (2)

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge U. Press, 1999), Chap. 1.
[PubMed]

G. T. Purves, “Absorption and dispersion in atomic vapours: applications to interferometery,” Ph.D. dissertation (University of Durham, 2006), http://massey.dur.ac.uk/resources/gtpurves/index.html.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup. Diode laser, grating, and mirror are composed of the Littman–Metcalf configuration ECDL. The Sagnac loop is composed of a right-angle prism, a total reflective mirror, and two beam splitters (BS1 and BS2). BS1 is used for input and interference output, with a split ratio of 50 : 50 , and BS2 is used to provide a reference intensity signal.

Fig. 2
Fig. 2

Oscilloscope trace of the saturated absorption spectrum (upper) and the dispersion spectrum (lower) of the 5 S 1 / 2 ( F = 2 ) 5 P 3 / 2 ( F = 3 , 2 , 1 ) transitions for Rb 87 . A glass plate with 4% reflection can be inserted between the Rb cell and BS1 to sample the “probe” beam as the saturation absorption signal. The red (gray) dot indicates the lock point, which corresponds to the peak of the transition. The inset shows the enlarged signal of the F = 2 F = 2 , 3 -crossover resonance.

Fig. 3
Fig. 3

Monitor trace of the dispersion signal with and without feedback. The dispersion signal fluctuates within 0.5 MHz after the feedback is active.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ ϕ ( ω ) = 2 π [ n 2 ( ω ) n 1 ( ω ) ] L / λ ,
I 1 = r 2 2 t 2 { exp ( α 1 L ) + exp ( α 2 L ) 2 exp [ ( α 1 + α 2 ) L / 2 ] cos ( Δ δ + Δ ϕ ) } I / 4 ,
I 2 = t 2 2 t 2 exp ( α 1 L ) I / 2 ,
I signal = A 1 I 1 A 2 I 2 = t 2 { A 1 r 2 2 [ exp ( α 1 L ) + exp ( α 2 L ) 2 exp [ ( α 1 + α 2 ) L / 2 ] cos Δ δ ] 2 A 2 t 2 2 exp ( α 1 L ) } I / 4 + A 1 r 2 2 t 2 exp [ ( α 1 + α 2 ) L / 2 ] ( sin Δ δ ) Δ ϕ I / 2 .
I signal e ( α 1 + α 2 ) L / 2 sin Δ δ · Δ ϕ ( ω ) .

Metrics