Abstract

We report experimental excitation and characterization of surface plasmon modes in planar metal–insulator–metal (MIM) waveguides. Our approach is based on determining the width of the reflection angular spectrum in the attenuated total reflection (ATR) configuration. Owing to its transverse character, the ATR configuration provides a more straightforward and simpler way to determine the loss of plasmonic modes in MIM structures, compared to using tapered end couplers with multiple waveguide samples or scanning near-field optical microscopy. In this Letter, two waveguide structures with Au claddings and 50/200nm SiO2 cores are investigated. The propagation lengths measured at λ=1.55μm are 5.7 and 18μm, respectively, in agreement with the theoretical predictions.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
    [CrossRef] [PubMed]
  3. E. Ozbay, Science 311, 189 (2006).
    [CrossRef] [PubMed]
  4. E. Feigenbaum and M. Orenstein, J. Lightwave Technol. 25, 2547 (2007).
    [CrossRef]
  5. T. Goto, Y. Katagiri, H. Fukuda, H. Shinojima, Y. Nakano, I. Kobayashi, and Y. Mitsuoka, Appl. Phys. Lett. 84, 852 (2004).
    [CrossRef]
  6. J. A. Dionne, H. J. Lezec, and H. A. Atwater, Nano Lett. 6, 1928 (2006).
    [CrossRef] [PubMed]
  7. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, Phys. Rev. Lett. 95, 046802 (2005).
    [CrossRef] [PubMed]
  8. J. C. Weeber, Y. Lacroute, and A. Dereux, Phys. Rev. B 68, 115401 (2003).
    [CrossRef]
  9. E. Verhagen, J. A. Dionne, L. Kuipers, H. A. Atwater, and A. Polman, Nano Lett. 8, 2925 (2008).
    [CrossRef] [PubMed]
  10. C.-I. Lin and T. K. Gaylord, Appl. Opt. 48, 3603 (2009).
    [CrossRef] [PubMed]
  11. C.-I. Lin and T. K. Gaylord, Appl. Opt. 49, 936 (2010).
    [CrossRef] [PubMed]
  12. R. Ulrich, J. Opt. Soc. Am. 60, 1337 (1970).
    [CrossRef]
  13. P. K. Tien and R. Ulrich, J. Opt. Soc. Am. 60, 1325 (1970).
    [CrossRef]
  14. A. E. Craig, G. A. Olson, and D. Sarid, Opt. Lett. 8, 380 (1983).
    [CrossRef] [PubMed]
  15. J. C. Quail, J. G. Rako, and H. J. Simon, Opt. Lett. 8, 377 (1983).
    [CrossRef] [PubMed]
  16. F. Z. Yang, G. W. Bradberry, and J. R. Sambles, Phys. Rev. Lett. 66, 2030 (1991).
    [CrossRef] [PubMed]
  17. A. Otto, Z. Phys. 216, 398 (1968).
    [CrossRef]
  18. Metricon Corporation, http://www.metricon.com/.
  19. E. Anemogiannis and E. N. Glytsis, J. Lightwave Technol. 10, 1344 (1992).
    [CrossRef]
  20. P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
    [CrossRef]
  21. A. C. Adams, F. B. Alexander, C. D. Capio, and T. E. Smith, J. Electrochem. Soc. 128, 1545 (1981).
    [CrossRef]
  22. S. Matsuo and M. Kiuchi, Jpn. J. Appl. Phys. 22, L210 (1983).
    [CrossRef]

2010

2009

2008

E. Verhagen, J. A. Dionne, L. Kuipers, H. A. Atwater, and A. Polman, Nano Lett. 8, 2925 (2008).
[CrossRef] [PubMed]

2007

2006

E. Ozbay, Science 311, 189 (2006).
[CrossRef] [PubMed]

J. A. Dionne, H. J. Lezec, and H. A. Atwater, Nano Lett. 6, 1928 (2006).
[CrossRef] [PubMed]

2005

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

2004

T. Goto, Y. Katagiri, H. Fukuda, H. Shinojima, Y. Nakano, I. Kobayashi, and Y. Mitsuoka, Appl. Phys. Lett. 84, 852 (2004).
[CrossRef]

2003

W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
[CrossRef] [PubMed]

J. C. Weeber, Y. Lacroute, and A. Dereux, Phys. Rev. B 68, 115401 (2003).
[CrossRef]

1992

E. Anemogiannis and E. N. Glytsis, J. Lightwave Technol. 10, 1344 (1992).
[CrossRef]

1991

F. Z. Yang, G. W. Bradberry, and J. R. Sambles, Phys. Rev. Lett. 66, 2030 (1991).
[CrossRef] [PubMed]

1983

1981

A. C. Adams, F. B. Alexander, C. D. Capio, and T. E. Smith, J. Electrochem. Soc. 128, 1545 (1981).
[CrossRef]

1972

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

1970

1968

A. Otto, Z. Phys. 216, 398 (1968).
[CrossRef]

Adams, A. C.

A. C. Adams, F. B. Alexander, C. D. Capio, and T. E. Smith, J. Electrochem. Soc. 128, 1545 (1981).
[CrossRef]

Alexander, F. B.

A. C. Adams, F. B. Alexander, C. D. Capio, and T. E. Smith, J. Electrochem. Soc. 128, 1545 (1981).
[CrossRef]

Anemogiannis, E.

E. Anemogiannis and E. N. Glytsis, J. Lightwave Technol. 10, 1344 (1992).
[CrossRef]

Atwater, H. A.

E. Verhagen, J. A. Dionne, L. Kuipers, H. A. Atwater, and A. Polman, Nano Lett. 8, 2925 (2008).
[CrossRef] [PubMed]

J. A. Dionne, H. J. Lezec, and H. A. Atwater, Nano Lett. 6, 1928 (2006).
[CrossRef] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
[CrossRef] [PubMed]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

Bradberry, G. W.

F. Z. Yang, G. W. Bradberry, and J. R. Sambles, Phys. Rev. Lett. 66, 2030 (1991).
[CrossRef] [PubMed]

Capio, C. D.

A. C. Adams, F. B. Alexander, C. D. Capio, and T. E. Smith, J. Electrochem. Soc. 128, 1545 (1981).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Craig, A. E.

Dereux, A.

J. C. Weeber, Y. Lacroute, and A. Dereux, Phys. Rev. B 68, 115401 (2003).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
[CrossRef] [PubMed]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

Dionne, J. A.

E. Verhagen, J. A. Dionne, L. Kuipers, H. A. Atwater, and A. Polman, Nano Lett. 8, 2925 (2008).
[CrossRef] [PubMed]

J. A. Dionne, H. J. Lezec, and H. A. Atwater, Nano Lett. 6, 1928 (2006).
[CrossRef] [PubMed]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
[CrossRef] [PubMed]

Feigenbaum, E.

Fukuda, H.

T. Goto, Y. Katagiri, H. Fukuda, H. Shinojima, Y. Nakano, I. Kobayashi, and Y. Mitsuoka, Appl. Phys. Lett. 84, 852 (2004).
[CrossRef]

Gaylord, T. K.

Glytsis, E. N.

E. Anemogiannis and E. N. Glytsis, J. Lightwave Technol. 10, 1344 (1992).
[CrossRef]

Goto, T.

T. Goto, Y. Katagiri, H. Fukuda, H. Shinojima, Y. Nakano, I. Kobayashi, and Y. Mitsuoka, Appl. Phys. Lett. 84, 852 (2004).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Katagiri, Y.

T. Goto, Y. Katagiri, H. Fukuda, H. Shinojima, Y. Nakano, I. Kobayashi, and Y. Mitsuoka, Appl. Phys. Lett. 84, 852 (2004).
[CrossRef]

Kiuchi, M.

S. Matsuo and M. Kiuchi, Jpn. J. Appl. Phys. 22, L210 (1983).
[CrossRef]

Kobayashi, I.

T. Goto, Y. Katagiri, H. Fukuda, H. Shinojima, Y. Nakano, I. Kobayashi, and Y. Mitsuoka, Appl. Phys. Lett. 84, 852 (2004).
[CrossRef]

Kuipers, L.

E. Verhagen, J. A. Dionne, L. Kuipers, H. A. Atwater, and A. Polman, Nano Lett. 8, 2925 (2008).
[CrossRef] [PubMed]

Lacroute, Y.

J. C. Weeber, Y. Lacroute, and A. Dereux, Phys. Rev. B 68, 115401 (2003).
[CrossRef]

Lezec, H. J.

J. A. Dionne, H. J. Lezec, and H. A. Atwater, Nano Lett. 6, 1928 (2006).
[CrossRef] [PubMed]

Lin, C.-I.

Matsuo, S.

S. Matsuo and M. Kiuchi, Jpn. J. Appl. Phys. 22, L210 (1983).
[CrossRef]

Mitsuoka, Y.

T. Goto, Y. Katagiri, H. Fukuda, H. Shinojima, Y. Nakano, I. Kobayashi, and Y. Mitsuoka, Appl. Phys. Lett. 84, 852 (2004).
[CrossRef]

Nakano, Y.

T. Goto, Y. Katagiri, H. Fukuda, H. Shinojima, Y. Nakano, I. Kobayashi, and Y. Mitsuoka, Appl. Phys. Lett. 84, 852 (2004).
[CrossRef]

Olson, G. A.

Orenstein, M.

Otto, A.

A. Otto, Z. Phys. 216, 398 (1968).
[CrossRef]

Ozbay, E.

E. Ozbay, Science 311, 189 (2006).
[CrossRef] [PubMed]

Polman, A.

E. Verhagen, J. A. Dionne, L. Kuipers, H. A. Atwater, and A. Polman, Nano Lett. 8, 2925 (2008).
[CrossRef] [PubMed]

Quail, J. C.

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Rako, J. G.

Sambles, J. R.

F. Z. Yang, G. W. Bradberry, and J. R. Sambles, Phys. Rev. Lett. 66, 2030 (1991).
[CrossRef] [PubMed]

Sarid, D.

Shinojima, H.

T. Goto, Y. Katagiri, H. Fukuda, H. Shinojima, Y. Nakano, I. Kobayashi, and Y. Mitsuoka, Appl. Phys. Lett. 84, 852 (2004).
[CrossRef]

Simon, H. J.

Smith, T. E.

A. C. Adams, F. B. Alexander, C. D. Capio, and T. E. Smith, J. Electrochem. Soc. 128, 1545 (1981).
[CrossRef]

Tien, P. K.

Ulrich, R.

Verhagen, E.

E. Verhagen, J. A. Dionne, L. Kuipers, H. A. Atwater, and A. Polman, Nano Lett. 8, 2925 (2008).
[CrossRef] [PubMed]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

Weeber, J. C.

J. C. Weeber, Y. Lacroute, and A. Dereux, Phys. Rev. B 68, 115401 (2003).
[CrossRef]

Yang, F. Z.

F. Z. Yang, G. W. Bradberry, and J. R. Sambles, Phys. Rev. Lett. 66, 2030 (1991).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

T. Goto, Y. Katagiri, H. Fukuda, H. Shinojima, Y. Nakano, I. Kobayashi, and Y. Mitsuoka, Appl. Phys. Lett. 84, 852 (2004).
[CrossRef]

J. Electrochem. Soc.

A. C. Adams, F. B. Alexander, C. D. Capio, and T. E. Smith, J. Electrochem. Soc. 128, 1545 (1981).
[CrossRef]

J. Lightwave Technol.

E. Anemogiannis and E. N. Glytsis, J. Lightwave Technol. 10, 1344 (1992).
[CrossRef]

E. Feigenbaum and M. Orenstein, J. Lightwave Technol. 25, 2547 (2007).
[CrossRef]

J. Opt. Soc. Am.

Jpn. J. Appl. Phys.

S. Matsuo and M. Kiuchi, Jpn. J. Appl. Phys. 22, L210 (1983).
[CrossRef]

Nano Lett.

J. A. Dionne, H. J. Lezec, and H. A. Atwater, Nano Lett. 6, 1928 (2006).
[CrossRef] [PubMed]

E. Verhagen, J. A. Dionne, L. Kuipers, H. A. Atwater, and A. Polman, Nano Lett. 8, 2925 (2008).
[CrossRef] [PubMed]

Nature

W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. B

J. C. Weeber, Y. Lacroute, and A. Dereux, Phys. Rev. B 68, 115401 (2003).
[CrossRef]

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Phys. Rev. Lett.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

F. Z. Yang, G. W. Bradberry, and J. R. Sambles, Phys. Rev. Lett. 66, 2030 (1991).
[CrossRef] [PubMed]

Science

E. Ozbay, Science 311, 189 (2006).
[CrossRef] [PubMed]

Z. Phys.

A. Otto, Z. Phys. 216, 398 (1968).
[CrossRef]

Other

Metricon Corporation, http://www.metricon.com/.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the ATR configuration applied to the MIM structures.

Fig. 2
Fig. 2

Reflection power spectra measured at various fluid ( n g = 1.4459 ) gap thickness d g values. The x axis is the effective index of the incident beam, N eff β / k 0 . The resonances corresponding to the fluid gap–metal SP mode and the TM 0 mode of the MIM structure are labeled.

Fig. 3
Fig. 3

(a) Reflection power spectra for the structure in Fig. 1 with d m = 80 nm and d i = 200 nm measured at various air gap thicknesses d g , which correspond to pressures of the coupling head, P c = 30 , 35, 40, 45, and 50 psi . (b) Normalized attenuation coefficients α MIM / k 0 = HWHM for the resonance at various values of P c .

Fig. 4
Fig. 4

(a) Reflection power spectra for the structure in Fig. 1 with d m = 80 nm and d i = 50 nm measured at various air gap thicknesses d g corresponding to P c = 30 , 35, 40, 45, and 50 psi . (b) Normalized attenuation coefficients α MIM / k 0 = HWHM for the resonance at various values of P c .

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R R SP [ 1 S ( β ) · α MIM ( β β MIM ) 2 + α MIM 2 ] ,

Metrics