Abstract

We consider a technique for high-resolution image upconversion of thermal light. Experimentally, we demonstrate cw upconversion with a resolution of more than 200×1000 pixels of thermally illuminated objects. This is the first demonstration (to our knowledge) of high-resolution cw image upconversion. The upconversion method promises an alternative route to high-quantum-efficiency all-optical imaging in the mid-IR wavelength region and beyond using standard CCD cameras. A particular advantage of CCD cameras compared to state-of-the-art thermal cameras is the possibility to tailor and tune the spectral response leading to functional spectral imaging.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. Midwinter, Appl. Phys. Lett. 12, 68 (1968).
    [CrossRef]
  2. J. E. Midwinter, Appl. Phys. Lett. 14, 29 (1969).
    [CrossRef]
  3. J. Falk and W. B. Tiffany, J. Appl. Phys. 43, 3762 (1972).
    [CrossRef]
  4. R. F. Lucy, Appl. Opt. 11, 1329 (1972).
    [CrossRef] [PubMed]
  5. J. Warner, Opt. Quantum. Electron. 3, 37 (1971).
    [CrossRef]
  6. J. Warner, Appl. Phys. Lett. 13, 360 (1968).
    [CrossRef]
  7. R. W. Boydand and C. H. Townes, Appl. Phys. Lett. 31, 440 (1977).
    [CrossRef]
  8. D. Stothard, M. Dunn, and C. Rae, Opt. Express 12, 947 (2004).
    [CrossRef] [PubMed]
  9. C. Pedersen, E. Karamehmedović, J. S. Dam, and P. Tidemand-Lichtenberg, Opt. Express 17, 20885 (2009).
    [CrossRef] [PubMed]
  10. N. P. Barnes and V. J. Corcoran, Appl. Opt. 15, 696 (1976).
    [CrossRef] [PubMed]
  11. B. Chalopin, A. Chiummo, C. Fabre, A. Maître, and N. Treps, Opt. Express 18, 8033 (2010).
    [CrossRef] [PubMed]
  12. S. Bonora, U. Bortolozzo, S. Residori, R. Balu, and P. V. Ashrit, Opt. Lett. 35, 103 (2010).
    [CrossRef] [PubMed]

2010 (2)

2009 (1)

2004 (1)

1977 (1)

R. W. Boydand and C. H. Townes, Appl. Phys. Lett. 31, 440 (1977).
[CrossRef]

1976 (1)

1972 (2)

J. Falk and W. B. Tiffany, J. Appl. Phys. 43, 3762 (1972).
[CrossRef]

R. F. Lucy, Appl. Opt. 11, 1329 (1972).
[CrossRef] [PubMed]

1971 (1)

J. Warner, Opt. Quantum. Electron. 3, 37 (1971).
[CrossRef]

1969 (1)

J. E. Midwinter, Appl. Phys. Lett. 14, 29 (1969).
[CrossRef]

1968 (2)

J. E. Midwinter, Appl. Phys. Lett. 12, 68 (1968).
[CrossRef]

J. Warner, Appl. Phys. Lett. 13, 360 (1968).
[CrossRef]

Ashrit, P. V.

Balu, R.

Barnes, N. P.

Bonora, S.

Bortolozzo, U.

Boydand, R. W.

R. W. Boydand and C. H. Townes, Appl. Phys. Lett. 31, 440 (1977).
[CrossRef]

Chalopin, B.

Chiummo, A.

Corcoran, V. J.

Dam, J. S.

Dunn, M.

Fabre, C.

Falk, J.

J. Falk and W. B. Tiffany, J. Appl. Phys. 43, 3762 (1972).
[CrossRef]

Karamehmedovic, E.

Lucy, R. F.

Maître, A.

Midwinter, J. E.

J. E. Midwinter, Appl. Phys. Lett. 14, 29 (1969).
[CrossRef]

J. E. Midwinter, Appl. Phys. Lett. 12, 68 (1968).
[CrossRef]

Pedersen, C.

Rae, C.

Residori, S.

Stothard, D.

Tidemand-Lichtenberg, P.

Tiffany, W. B.

J. Falk and W. B. Tiffany, J. Appl. Phys. 43, 3762 (1972).
[CrossRef]

Townes, C. H.

R. W. Boydand and C. H. Townes, Appl. Phys. Lett. 31, 440 (1977).
[CrossRef]

Treps, N.

Warner, J.

J. Warner, Opt. Quantum. Electron. 3, 37 (1971).
[CrossRef]

J. Warner, Appl. Phys. Lett. 13, 360 (1968).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (4)

J. E. Midwinter, Appl. Phys. Lett. 12, 68 (1968).
[CrossRef]

J. E. Midwinter, Appl. Phys. Lett. 14, 29 (1969).
[CrossRef]

J. Warner, Appl. Phys. Lett. 13, 360 (1968).
[CrossRef]

R. W. Boydand and C. H. Townes, Appl. Phys. Lett. 31, 440 (1977).
[CrossRef]

J. Appl. Phys. (1)

J. Falk and W. B. Tiffany, J. Appl. Phys. 43, 3762 (1972).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Opt. Quantum. Electron. (1)

J. Warner, Opt. Quantum. Electron. 3, 37 (1971).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Incoherently radiating object (O1) emits spherical waves. These waves are transformed into plane waves via the lens (L1). An intracavity Gaussian field (shown in green) inside the nonlinear crystal acts as the upconverting beam as well as a Gaussian aperture. The upconverted light is subsequently imaged onto a CCD chip (I1) by a lens (L2). (b) Complete setup.

Fig. 2
Fig. 2

Upconversion experiment, where the object is a filament of (a) a lit standard 25 W light bulb, filtered by a 750 nm bandpass filter ( 40 nm FWHM). (b) Direct image of the filament measured at the image plane (no wavelength conversion). (c) Upconverted image. (d) Superimposed images.

Fig. 3
Fig. 3

(a) Full-size upconverted image of a standard United States Air Force resolution target rear illuminated by a halogen light source. (b) Optical zoom of the central part of (a). (c) Direct image corresponding to (b). (d) Line trace showing the horizontal and vertical resolution limits.

Fig. 4
Fig. 4

Modulation transfer function for the image conversion is calculated from Figs. 3a, 3b. The data for the high- resolution axis are all measured from Fig. 3b, whereas the data for the low-resolution axis are from Figs. 3a, 3b.

Metrics