Abstract

We report an actively mode-locked fiber ring laser. A simple and low-insertion-loss acousto-optic modulator driven by standing flexural waves, which couples core-to-cladding modes in a standard single-mode optical fiber, is used as an active mechanism for mode locking. Among the remarkable features of the modulator, we mention its high modulation depth (72%), broad bandwidth (187GHz), easy tunability in the optical wavelength, and low insertion losses (0.7dB). The narrowest optical pulses obtained were of 95ps time width, 21mW peak power, repetition rate of 4.758MHz, and 110mW of pump power.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. W. Phillips, A. I. Ferguson, G. S. Kino, and D. B. Patterson, Opt. Lett. 14, 680 (1989).
    [CrossRef] [PubMed]
  2. D. O. Culverhouse, D. J. Richardson, T. A. Birks, and P. St.J. Russell, Opt. Lett. 20, 2381 (1995).
    [CrossRef] [PubMed]
  3. N. Myrén and W. Margulis, IEEE Photon. Technol. Lett. 17, 2047 (2005).
    [CrossRef]
  4. C. Cuadrado-Laborde, A. Díez, M. Delgado-Pinar, J. L. Cruz, and M. V. Andrés, Opt. Lett. 34, 1111 (2009).
    [CrossRef] [PubMed]
  5. M.-Y. Jeon, H. K. Lee, K. H. Kim, E.-H. Lee, W.-Y. Oh, B. Y. Kim, H.-W. Lee, and Y. W. Koh, Opt. Commun. 149, 312 (1998).
    [CrossRef]
  6. H. S. Kim, S. H. Yun, I. K. Kwang, and B. Y. Kim, Opt. Lett. 22, 1476 (1997).
    [CrossRef]
  7. P. A. Bélanger, Opt. Express 13, 8089 (2005).
    [CrossRef] [PubMed]
  8. D. J. Kuizenga and A. E. Siegman, IEEE J. Quantum Electron. 6, 694 (1970).
    [CrossRef]
  9. Y. Li, C. Lou, M. Han, and Y. Gao, Opt. Quantum Electron. 33, 589 (2001).
    [CrossRef]

2009 (1)

2005 (2)

P. A. Bélanger, Opt. Express 13, 8089 (2005).
[CrossRef] [PubMed]

N. Myrén and W. Margulis, IEEE Photon. Technol. Lett. 17, 2047 (2005).
[CrossRef]

2001 (1)

Y. Li, C. Lou, M. Han, and Y. Gao, Opt. Quantum Electron. 33, 589 (2001).
[CrossRef]

1998 (1)

M.-Y. Jeon, H. K. Lee, K. H. Kim, E.-H. Lee, W.-Y. Oh, B. Y. Kim, H.-W. Lee, and Y. W. Koh, Opt. Commun. 149, 312 (1998).
[CrossRef]

1997 (1)

1995 (1)

1989 (1)

1970 (1)

D. J. Kuizenga and A. E. Siegman, IEEE J. Quantum Electron. 6, 694 (1970).
[CrossRef]

Andrés, M. V.

Bélanger, P. A.

Birks, T. A.

Cruz, J. L.

Cuadrado-Laborde, C.

Culverhouse, D. O.

Delgado-Pinar, M.

Díez, A.

Ferguson, A. I.

Gao, Y.

Y. Li, C. Lou, M. Han, and Y. Gao, Opt. Quantum Electron. 33, 589 (2001).
[CrossRef]

Han, M.

Y. Li, C. Lou, M. Han, and Y. Gao, Opt. Quantum Electron. 33, 589 (2001).
[CrossRef]

Jeon, M.-Y.

M.-Y. Jeon, H. K. Lee, K. H. Kim, E.-H. Lee, W.-Y. Oh, B. Y. Kim, H.-W. Lee, and Y. W. Koh, Opt. Commun. 149, 312 (1998).
[CrossRef]

Kim, B. Y.

M.-Y. Jeon, H. K. Lee, K. H. Kim, E.-H. Lee, W.-Y. Oh, B. Y. Kim, H.-W. Lee, and Y. W. Koh, Opt. Commun. 149, 312 (1998).
[CrossRef]

H. S. Kim, S. H. Yun, I. K. Kwang, and B. Y. Kim, Opt. Lett. 22, 1476 (1997).
[CrossRef]

Kim, H. S.

Kim, K. H.

M.-Y. Jeon, H. K. Lee, K. H. Kim, E.-H. Lee, W.-Y. Oh, B. Y. Kim, H.-W. Lee, and Y. W. Koh, Opt. Commun. 149, 312 (1998).
[CrossRef]

Kino, G. S.

Koh, Y. W.

M.-Y. Jeon, H. K. Lee, K. H. Kim, E.-H. Lee, W.-Y. Oh, B. Y. Kim, H.-W. Lee, and Y. W. Koh, Opt. Commun. 149, 312 (1998).
[CrossRef]

Kuizenga, D. J.

D. J. Kuizenga and A. E. Siegman, IEEE J. Quantum Electron. 6, 694 (1970).
[CrossRef]

Kwang, I. K.

Lee, E.-H.

M.-Y. Jeon, H. K. Lee, K. H. Kim, E.-H. Lee, W.-Y. Oh, B. Y. Kim, H.-W. Lee, and Y. W. Koh, Opt. Commun. 149, 312 (1998).
[CrossRef]

Lee, H. K.

M.-Y. Jeon, H. K. Lee, K. H. Kim, E.-H. Lee, W.-Y. Oh, B. Y. Kim, H.-W. Lee, and Y. W. Koh, Opt. Commun. 149, 312 (1998).
[CrossRef]

Lee, H.-W.

M.-Y. Jeon, H. K. Lee, K. H. Kim, E.-H. Lee, W.-Y. Oh, B. Y. Kim, H.-W. Lee, and Y. W. Koh, Opt. Commun. 149, 312 (1998).
[CrossRef]

Li, Y.

Y. Li, C. Lou, M. Han, and Y. Gao, Opt. Quantum Electron. 33, 589 (2001).
[CrossRef]

Lou, C.

Y. Li, C. Lou, M. Han, and Y. Gao, Opt. Quantum Electron. 33, 589 (2001).
[CrossRef]

Margulis, W.

N. Myrén and W. Margulis, IEEE Photon. Technol. Lett. 17, 2047 (2005).
[CrossRef]

Myrén, N.

N. Myrén and W. Margulis, IEEE Photon. Technol. Lett. 17, 2047 (2005).
[CrossRef]

Oh, W.-Y.

M.-Y. Jeon, H. K. Lee, K. H. Kim, E.-H. Lee, W.-Y. Oh, B. Y. Kim, H.-W. Lee, and Y. W. Koh, Opt. Commun. 149, 312 (1998).
[CrossRef]

Patterson, D. B.

Phillips, M. W.

Richardson, D. J.

Russell, P. St.J.

Siegman, A. E.

D. J. Kuizenga and A. E. Siegman, IEEE J. Quantum Electron. 6, 694 (1970).
[CrossRef]

Yun, S. H.

IEEE J. Quantum Electron. (1)

D. J. Kuizenga and A. E. Siegman, IEEE J. Quantum Electron. 6, 694 (1970).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

N. Myrén and W. Margulis, IEEE Photon. Technol. Lett. 17, 2047 (2005).
[CrossRef]

Opt. Commun. (1)

M.-Y. Jeon, H. K. Lee, K. H. Kim, E.-H. Lee, W.-Y. Oh, B. Y. Kim, H.-W. Lee, and Y. W. Koh, Opt. Commun. 149, 312 (1998).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Opt. Quantum Electron. (1)

Y. Li, C. Lou, M. Han, and Y. Gao, Opt. Quantum Electron. 33, 589 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Mode-locked fiber-laser setup. The AOM is defined by the elements inside the dashed line.

Fig. 2
Fig. 2

(a) Modulation depth as a function of the optical wavelength for an rf signal applied to the piezoelectric of 2.37315 MHz and 18 V . (b) Resonant optical wavelengths as a function of the frequency of the rf signal (solid scatter points); its corresponding modulation depth is also shown to the right ordinate (open scatter points).

Fig. 3
Fig. 3

(a) Voltage signal used to drive the piezoelectric and mode-locked train of pulses generated at 4.75 MHz repetition rate with 271 mW of pump power (dashed and solid curves, respectively). (b) Time width (FWHM) and peak power of the optical pulses as a function of the pump power (solid and open scatter points, respectively). The inset shows a single pulse of 95 ps time width.

Fig. 4
Fig. 4

(a) Time width (FWHM) and peak power as a function of the applied voltage; for a fixed frequency of 2.3731 MHz (open and solid scatter points, respectively). (b) Same as before, but as a function of the frequency detuning, for a fixed voltage of 26 V . In both cases, a pump power of 350 mW was used.

Metrics