Abstract

We propose and demonstrate a novel method for the elimination of arbitrary frequency chirp from short optical pulses. The technique is based on the combination of two cascaded second-order nonlinearities in two individual periodically poled lithium niobate waveguides. The proposed scheme operates independently of the spectral phase characteristics of the input pulse, producing a near-transform-limited output.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, J. Lightwave Technol. 24, 2579 (2006).
    [CrossRef]
  2. K. Gallo, G. Assanto, and G. I. Stegeman, Appl. Phys. Lett. 71, 1020 (1997).
    [CrossRef]
  3. K. J. Lee, S. Liu, F. Parmigiani, M. Ibsen, P. Petropoulos, K. Gallo, and D. J. Richardson, Opt. Express 18, 10282 (2010).
    [CrossRef] [PubMed]
  4. J. E. McGeehan, M. Giltrelli, and A. E. Willner, Electron. Lett. 43, 409 (2007).
    [CrossRef]
  5. Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, IEEE Photonics Technol. Lett. 19, 861 (2007).
    [CrossRef]
  6. K. J. Lee, F. Parmigiani, S. Liu, J. Kakande, P. Petropoulos, K. Gallo, and D. Richardson, Opt. Express 17, 20393 (2009).
    [CrossRef] [PubMed]
  7. J. Prawiharjo, K. Gallo, N. G. Broderick, and D. Richardson, J. Opt. Soc. Am. B 22, 1985 (2005).
    [CrossRef]
  8. J. Fonseca-Campos, Y. Wang, B. Chen, C.-Q. Xu, S. Yang, E. Ponomarev, and X. Bao, J. Lightwave Technol. 24, 3698(2006).
    [CrossRef]
  9. K. T. Vu, A. Malinowski, M. A. F. Roelens, M. Ibsen, P. Petropoulos, and D. J. Richardson, IEEE Photonics Technol. Lett. 20, 505 (2008).
    [CrossRef]

2010

2009

2008

K. T. Vu, A. Malinowski, M. A. F. Roelens, M. Ibsen, P. Petropoulos, and D. J. Richardson, IEEE Photonics Technol. Lett. 20, 505 (2008).
[CrossRef]

2007

J. E. McGeehan, M. Giltrelli, and A. E. Willner, Electron. Lett. 43, 409 (2007).
[CrossRef]

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, IEEE Photonics Technol. Lett. 19, 861 (2007).
[CrossRef]

2006

2005

1997

K. Gallo, G. Assanto, and G. I. Stegeman, Appl. Phys. Lett. 71, 1020 (1997).
[CrossRef]

Assanto, G.

K. Gallo, G. Assanto, and G. I. Stegeman, Appl. Phys. Lett. 71, 1020 (1997).
[CrossRef]

Bao, X.

Broderick, N. G.

Chen, B.

Fejer, M. M.

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, IEEE Photonics Technol. Lett. 19, 861 (2007).
[CrossRef]

C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, J. Lightwave Technol. 24, 2579 (2006).
[CrossRef]

Fonseca-Campos, J.

Gaeta, A. L.

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, IEEE Photonics Technol. Lett. 19, 861 (2007).
[CrossRef]

Gallo, K.

Giltrelli, M.

J. E. McGeehan, M. Giltrelli, and A. E. Willner, Electron. Lett. 43, 409 (2007).
[CrossRef]

Ibsen, M.

K. J. Lee, S. Liu, F. Parmigiani, M. Ibsen, P. Petropoulos, K. Gallo, and D. J. Richardson, Opt. Express 18, 10282 (2010).
[CrossRef] [PubMed]

K. T. Vu, A. Malinowski, M. A. F. Roelens, M. Ibsen, P. Petropoulos, and D. J. Richardson, IEEE Photonics Technol. Lett. 20, 505 (2008).
[CrossRef]

Kakande, J.

Kumar, S.

Langrock, C.

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, IEEE Photonics Technol. Lett. 19, 861 (2007).
[CrossRef]

C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, J. Lightwave Technol. 24, 2579 (2006).
[CrossRef]

Lee, K. J.

Liu, S.

Malinowski, A.

K. T. Vu, A. Malinowski, M. A. F. Roelens, M. Ibsen, P. Petropoulos, and D. J. Richardson, IEEE Photonics Technol. Lett. 20, 505 (2008).
[CrossRef]

McGeehan, J. E.

Parmigiani, F.

Petropoulos, P.

Ponomarev, E.

Prawiharjo, J.

Richardson, D.

Richardson, D. J.

K. J. Lee, S. Liu, F. Parmigiani, M. Ibsen, P. Petropoulos, K. Gallo, and D. J. Richardson, Opt. Express 18, 10282 (2010).
[CrossRef] [PubMed]

K. T. Vu, A. Malinowski, M. A. F. Roelens, M. Ibsen, P. Petropoulos, and D. J. Richardson, IEEE Photonics Technol. Lett. 20, 505 (2008).
[CrossRef]

Roelens, M. A. F.

K. T. Vu, A. Malinowski, M. A. F. Roelens, M. Ibsen, P. Petropoulos, and D. J. Richardson, IEEE Photonics Technol. Lett. 20, 505 (2008).
[CrossRef]

Roussev, R.

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, IEEE Photonics Technol. Lett. 19, 861 (2007).
[CrossRef]

Sharping, J. E.

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, IEEE Photonics Technol. Lett. 19, 861 (2007).
[CrossRef]

Stegeman, G. I.

K. Gallo, G. Assanto, and G. I. Stegeman, Appl. Phys. Lett. 71, 1020 (1997).
[CrossRef]

Vu, K. T.

K. T. Vu, A. Malinowski, M. A. F. Roelens, M. Ibsen, P. Petropoulos, and D. J. Richardson, IEEE Photonics Technol. Lett. 20, 505 (2008).
[CrossRef]

Wang, Y.

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, IEEE Photonics Technol. Lett. 19, 861 (2007).
[CrossRef]

J. Fonseca-Campos, Y. Wang, B. Chen, C.-Q. Xu, S. Yang, E. Ponomarev, and X. Bao, J. Lightwave Technol. 24, 3698(2006).
[CrossRef]

Willner, A. E.

J. E. McGeehan, M. Giltrelli, and A. E. Willner, Electron. Lett. 43, 409 (2007).
[CrossRef]

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, IEEE Photonics Technol. Lett. 19, 861 (2007).
[CrossRef]

C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, J. Lightwave Technol. 24, 2579 (2006).
[CrossRef]

Xu, C.-Q.

Yan, L.

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, IEEE Photonics Technol. Lett. 19, 861 (2007).
[CrossRef]

Yang, S.

Yu, C.

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, IEEE Photonics Technol. Lett. 19, 861 (2007).
[CrossRef]

Appl. Phys. Lett.

K. Gallo, G. Assanto, and G. I. Stegeman, Appl. Phys. Lett. 71, 1020 (1997).
[CrossRef]

Electron. Lett.

J. E. McGeehan, M. Giltrelli, and A. E. Willner, Electron. Lett. 43, 409 (2007).
[CrossRef]

IEEE Photonics Technol. Lett.

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, IEEE Photonics Technol. Lett. 19, 861 (2007).
[CrossRef]

K. T. Vu, A. Malinowski, M. A. F. Roelens, M. Ibsen, P. Petropoulos, and D. J. Richardson, IEEE Photonics Technol. Lett. 20, 505 (2008).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Opt. Express

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Illustration of chirp elimination in a short pulse based on both cSHG/DFG and cSFG/DFG in two cascaded PPLN waveguides. (b) Normalized powers [ P ( t ) / P peak ] and phases (φ) of the pumps (cj and cp, solid and dashed curves, respectively) and the cSFG/DFG output (out, black dots) of the second PPLN stage, calculated from Eq. (1) for a 3-cm-long PPLN waveguide with a normalized efficiency η nor = 60 % W 1 cm 2 , with 7-ps-long (FWHM) Gaussian input pump pulses with equalized (peak) powers P cp = P cj = 30 mW , at λ cp = 1540 nm and λ cj = 1552 nm , respectively. Continuous-wave input signal at λ si = 1558 nm , with P si = 1 mW .

Fig. 2
Fig. 2

Experimental setup used to generate the chirp-free pulse via a combination of cSHG/DFG and cSFG/DFG. PC, polarization controller; EDFA, erbium-doped fiber amplifier; l-FROG, linear frequency-resolved optical gating; OSA, optical spectrum analyzer.

Fig. 3
Fig. 3

Spectral traces measured after (a) the first PPLN waveguide and (b) the second PPLN waveguide.

Fig. 4
Fig. 4

Measured FROG traces for (a) the input chirped pulse, (c) its conjugated replica, and (e) the resultant chirp-free output pulses. Retrieved normalized intensities and phase profiles of (b) the input chirped pulse, (d) its conjugated replica, and (f) the resultant chirp-free output pulse.

Fig. 5
Fig. 5

Temporal traces of (a) the chirped input and (b) the chirp-free output pulses measured using the optical sampling oscilloscope.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

A cp z + 1 v 1 A cp t = i Γ 1 A sf A cj * exp ( i Δ β 1 z ) , A cj z + 1 v 2 A cj t = i Γ 1 A sf A cp * exp ( i Δ β 1 z ) , A si z + 1 v 3 A si t = i Γ 2 A sf A out * exp ( i Δ β 2 z ) , A out z + 1 v 4 A out t = i Γ 3 A sf A si * exp ( i Δ β 2 z ) , A sf z + 1 v 5 A sf t = i Γ 1 A cp A cj exp ( i Δ β 1 z ) i Γ 4 A si A out exp ( i Δ β 2 z ) ,

Metrics