Abstract

In this Letter, we create an optical nanoantenna array composed of parasitic plasmonic loops that can enhance radiation characteristics and direct the optical energy successfully. Three metallic loops inspired by the concept of the Yagi-Uda antenna are optimized around the region where they feature high scattering performance to control the radiation beam. The loop geometry, when compared to the dipole configuration, has the benefit of using the available aperture in an effective way to provide higher directivity. The angular emission of the nanoloop array antenna is highly directive, and a directivity of 8.2dB for upward radiation is established.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, Science 308, 1607 (2005).
    [CrossRef] [PubMed]
  2. J. Aizpurua, G. W. Bryant, L. J. Richter, and F. J. G. de Abajo, Phys. Rev. B. 71, 235420 (2005).
    [CrossRef]
  3. L. Novotny, Phys. Rev. Lett. 98, 266802 (2007).
    [CrossRef] [PubMed]
  4. N. Engheta, Science 317, 1698 (2007).
    [CrossRef] [PubMed]
  5. A. Ahmadi, S. Ghadarghadr, and H. Mosallaei, Opt. Express 18, 123 (2010).
    [CrossRef] [PubMed]
  6. S. Ghadarghadr, Z. Hao, and H. Mosallaei, Opt. Express 17, 18556 (2009).
    [CrossRef]
  7. T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, Opt. Express 16, 10858 (2008).
    [CrossRef] [PubMed]
  8. A. F. Koenderink, Nano Lett. 9, 4228 (2009).
    [CrossRef] [PubMed]
  9. V. M. Shalaev, Nat. Photon. 1, 41 (2007).
    [CrossRef]
  10. A. Ahmadi, S. Saadat, and H. Mosallaei, “Resonance and Q performance of ellipsoidal ENG subwavelength radiators,” IEEE Trans. Antennas Prop. (to be published).
  11. M. M. Tajdini, S. Ghadarghadr, and H. Mosallaei, in Photonic Metamaterials and Plasmonics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper JTuA16.
  12. John L. Volakis, Antenna Engineering Handbook, 4th ed. (McGraw-Hill, 2007).
  13. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, Jr., and C. A. Ward, Appl. Opt. 22, 1099(1983).
    [CrossRef] [PubMed]
  14. H. Mosallaei, IEEE Trans. Electromagn. Compat. 49, 649 (2007).
    [CrossRef]
  15. J.-Q. Xi, J. K. Kim, E. F. Schubert, D. Ye, T.-M. Lu, and S.-Y. Lin, Opt. Lett. 31, 601 (2006).
    [CrossRef] [PubMed]

2010

2009

2008

2007

V. M. Shalaev, Nat. Photon. 1, 41 (2007).
[CrossRef]

L. Novotny, Phys. Rev. Lett. 98, 266802 (2007).
[CrossRef] [PubMed]

N. Engheta, Science 317, 1698 (2007).
[CrossRef] [PubMed]

H. Mosallaei, IEEE Trans. Electromagn. Compat. 49, 649 (2007).
[CrossRef]

2006

2005

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, Science 308, 1607 (2005).
[CrossRef] [PubMed]

J. Aizpurua, G. W. Bryant, L. J. Richter, and F. J. G. de Abajo, Phys. Rev. B. 71, 235420 (2005).
[CrossRef]

1983

Ahmadi, A.

A. Ahmadi, S. Ghadarghadr, and H. Mosallaei, Opt. Express 18, 123 (2010).
[CrossRef] [PubMed]

A. Ahmadi, S. Saadat, and H. Mosallaei, “Resonance and Q performance of ellipsoidal ENG subwavelength radiators,” IEEE Trans. Antennas Prop. (to be published).

Aizpurua, J.

J. Aizpurua, G. W. Bryant, L. J. Richter, and F. J. G. de Abajo, Phys. Rev. B. 71, 235420 (2005).
[CrossRef]

Alexander, R. W.

Bell, R. J.

Bell, R. R.

Bell, S. E.

Bryant, G. W.

J. Aizpurua, G. W. Bryant, L. J. Richter, and F. J. G. de Abajo, Phys. Rev. B. 71, 235420 (2005).
[CrossRef]

de Abajo, F. J. G.

J. Aizpurua, G. W. Bryant, L. J. Richter, and F. J. G. de Abajo, Phys. Rev. B. 71, 235420 (2005).
[CrossRef]

Eisler, H. J.

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, Science 308, 1607 (2005).
[CrossRef] [PubMed]

Engheta, N.

N. Engheta, Science 317, 1698 (2007).
[CrossRef] [PubMed]

Ghadarghadr, S.

A. Ahmadi, S. Ghadarghadr, and H. Mosallaei, Opt. Express 18, 123 (2010).
[CrossRef] [PubMed]

S. Ghadarghadr, Z. Hao, and H. Mosallaei, Opt. Express 17, 18556 (2009).
[CrossRef]

M. M. Tajdini, S. Ghadarghadr, and H. Mosallaei, in Photonic Metamaterials and Plasmonics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper JTuA16.

Hao, Z.

Hecht, B.

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, Science 308, 1607 (2005).
[CrossRef] [PubMed]

Kim,

Koenderink, A. F.

A. F. Koenderink, Nano Lett. 9, 4228 (2009).
[CrossRef] [PubMed]

Lin, S.-Y.

Long, L. L.

Lu, T.-M.

Martin, O. J. F.

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, Science 308, 1607 (2005).
[CrossRef] [PubMed]

Mosallaei, H.

A. Ahmadi, S. Ghadarghadr, and H. Mosallaei, Opt. Express 18, 123 (2010).
[CrossRef] [PubMed]

S. Ghadarghadr, Z. Hao, and H. Mosallaei, Opt. Express 17, 18556 (2009).
[CrossRef]

H. Mosallaei, IEEE Trans. Electromagn. Compat. 49, 649 (2007).
[CrossRef]

M. M. Tajdini, S. Ghadarghadr, and H. Mosallaei, in Photonic Metamaterials and Plasmonics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper JTuA16.

A. Ahmadi, S. Saadat, and H. Mosallaei, “Resonance and Q performance of ellipsoidal ENG subwavelength radiators,” IEEE Trans. Antennas Prop. (to be published).

Muhlschlegel, P.

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, Science 308, 1607 (2005).
[CrossRef] [PubMed]

Novotny, L.

L. Novotny, Phys. Rev. Lett. 98, 266802 (2007).
[CrossRef] [PubMed]

Ordal, M. A.

Pohl, D. W.

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, Science 308, 1607 (2005).
[CrossRef] [PubMed]

Richter, L. J.

J. Aizpurua, G. W. Bryant, L. J. Richter, and F. J. G. de Abajo, Phys. Rev. B. 71, 235420 (2005).
[CrossRef]

Saadat, S.

A. Ahmadi, S. Saadat, and H. Mosallaei, “Resonance and Q performance of ellipsoidal ENG subwavelength radiators,” IEEE Trans. Antennas Prop. (to be published).

Schubert, E. F.

Shalaev, V. M.

V. M. Shalaev, Nat. Photon. 1, 41 (2007).
[CrossRef]

Stefani, F. D.

Tajdini, M. M.

M. M. Tajdini, S. Ghadarghadr, and H. Mosallaei, in Photonic Metamaterials and Plasmonics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper JTuA16.

Taminiau, T. H.

van Hulst, N. F.

Volakis, John L.

John L. Volakis, Antenna Engineering Handbook, 4th ed. (McGraw-Hill, 2007).

Ward, C. A.

Xi, J.-Q.

Ye, D.

Appl. Opt.

IEEE Trans. Electromagn. Compat.

H. Mosallaei, IEEE Trans. Electromagn. Compat. 49, 649 (2007).
[CrossRef]

Nano Lett.

A. F. Koenderink, Nano Lett. 9, 4228 (2009).
[CrossRef] [PubMed]

Nat. Photon.

V. M. Shalaev, Nat. Photon. 1, 41 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B.

J. Aizpurua, G. W. Bryant, L. J. Richter, and F. J. G. de Abajo, Phys. Rev. B. 71, 235420 (2005).
[CrossRef]

Phys. Rev. Lett.

L. Novotny, Phys. Rev. Lett. 98, 266802 (2007).
[CrossRef] [PubMed]

Science

N. Engheta, Science 317, 1698 (2007).
[CrossRef] [PubMed]

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, Science 308, 1607 (2005).
[CrossRef] [PubMed]

Other

A. Ahmadi, S. Saadat, and H. Mosallaei, “Resonance and Q performance of ellipsoidal ENG subwavelength radiators,” IEEE Trans. Antennas Prop. (to be published).

M. M. Tajdini, S. Ghadarghadr, and H. Mosallaei, in Photonic Metamaterials and Plasmonics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper JTuA16.

John L. Volakis, Antenna Engineering Handbook, 4th ed. (McGraw-Hill, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Single plasmonic loop antenna illuminated by an x-polarized electric field plane wave: l = 85 nm , t = 15 nm .

Fig. 2
Fig. 2

Resonance performance of a single plasmonic loop. High scattering occurs at λ = 1.34 μm .

Fig. 3
Fig. 3

Polarized current on plasmonic loop at resonant wavelength λ = 1.34 μm : (a) normalized | J x | (dB) and (b) normalized | J y | (dB). The current distribution is similar to what one observes in microwave for a rectangular loop antenna with 4 l λ (the size becomes subwavelength in optics).

Fig. 4
Fig. 4

Far-zone power pattern for single plasmonic loop at the operating wavelength.

Fig. 5
Fig. 5

Directivity (in decibels) for resonant plasmonic loop antenna in planes (a) ϕ = 0 and (b) ϕ = π / 2 . Maximum directivity is 2 dB .

Fig. 6
Fig. 6

Schematic view of nanoloop antenna array. At the operating wavelength of λ = 1.34 μm , the emitter element has the resonant size of 4 l 1 = 340 nm = λ / 3.9 , and the director lengths are 4 l 2 = 4 l 3 = 260 nm . The reflector spacing is t 1 = 125 nm , and the director spacings are t 2 = t 3 = 375 nm . The emitter and the directors are printed on low dielectric substrates with ε d = 1.5 . The silver slab has a thickness of t s = 205 nm . A finite-size structure of l s = 500 nm in the transverse plane is considered. The yellow arrow shows the excitation.

Fig. 7
Fig. 7

Directivity (in decibels) for parasitic plasmonic loop array antenna in planes: (a) ϕ = 0 and (b) ϕ = π / 2 . The emission of the coupled system is highly directed upward. Maximum directivity of 8.2 dB is established.

Fig. 8
Fig. 8

Far-zone power pattern for the array antenna. The power is highly directed toward the upper hemisphere, and the backradiation is suppressed. Successful collimation as compared to Fig. 4 is illustrated.

Fig. 9
Fig. 9

Electric field distribution induced on the nanoloops antenna array at the operating wavelength of λ = 1.34 μm (normalized and plotted in decibels).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ε ( ω ) = ε 0 ( 1 ω p 2 ω ( ω + i γ p ) ) ,

Metrics