Abstract

We present a fast reconstruction method for fluorescence optical tomography with structured illumination. Our approach is based on the exploitation of the wavelet transform of the measurements acquired after wavelet- patterned illuminations. This method, validated on experimental data, enables us to significantly reduce the acquisition and computation times with respect to the classical scanning approach. Therefore, it could be particularly suited for in vivo applications.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Cuccia, F. Bevilacqua, A. J. Durkin, and B. J. Tromberg, Opt. Lett. 30, 1354 (2005).
    [CrossRef] [PubMed]
  2. A. Joshi, W. Bangerth, and E. M. Sevick-Muraca, Opt. Express 14, 6516 (2006).
    [CrossRef] [PubMed]
  3. A. Bassi, C. D'Andrea, G. Valentini, R. Cubeddu, and S. Arridge, Opt. Lett. 34, 2156 (2009).
    [CrossRef] [PubMed]
  4. S. Bélanger, M. Abran, X. Intes, C. Casanova, and F. Lesage, J. Biomed. Opt. 15, 016006 (2010).
    [CrossRef] [PubMed]
  5. C. D'Andrea, N. Ducros, A. Bassi, S. Arridge, and G. Valentini, Biomed. Opt. Express 1, 106 (2010).
    [CrossRef]
  6. V. Lukic, V. A. Markel, and J. C. Schotland, Opt. Lett. 34, 983 (2009).
    [CrossRef] [PubMed]
  7. S. D. Konecky, A. Mazhar, D. Cuccia, A. J. Durkin, J. C. Schotland, and B. J. Tromberg, Opt. Express 17, 14780(2009).
    [CrossRef] [PubMed]
  8. J. Ripoll, Opt. Lett. 35, 688 (2010).
    [CrossRef] [PubMed]
  9. T. J. Rudge, V. Y. Soloviev, and S. R. Arridge, Opt. Lett. 35, 763 (2010).
    [CrossRef] [PubMed]
  10. N. Ducros, A. D. Silva, J.-M. Dinten, C. S. Seelamantula, M. Unser, and F. Peyrin, Med. Phys. 37, 2890 (2010).
    [CrossRef] [PubMed]
  11. M. Unser and A. Aldroubi, Proc. IEEE 84, 626 (1996).
    [CrossRef]
  12. S. R. Arridge and J. C. Schotland, Inverse Probl. 25, 123010(2009).
    [CrossRef]
  13. M. Schweiger and S. R. Arridge, TOAST package, http://web4.cs.ucl.ac.uk/research/vis/toast/ (2010).
  14. D. Donoho, A. Maleki, and M. Shahram, Wavelab 850, http://www-stat.stanford.edu/~wavelab/ (2010).

2010

S. Bélanger, M. Abran, X. Intes, C. Casanova, and F. Lesage, J. Biomed. Opt. 15, 016006 (2010).
[CrossRef] [PubMed]

N. Ducros, A. D. Silva, J.-M. Dinten, C. S. Seelamantula, M. Unser, and F. Peyrin, Med. Phys. 37, 2890 (2010).
[CrossRef] [PubMed]

J. Ripoll, Opt. Lett. 35, 688 (2010).
[CrossRef] [PubMed]

T. J. Rudge, V. Y. Soloviev, and S. R. Arridge, Opt. Lett. 35, 763 (2010).
[CrossRef] [PubMed]

C. D'Andrea, N. Ducros, A. Bassi, S. Arridge, and G. Valentini, Biomed. Opt. Express 1, 106 (2010).
[CrossRef]

2009

2006

2005

1996

M. Unser and A. Aldroubi, Proc. IEEE 84, 626 (1996).
[CrossRef]

Abran, M.

S. Bélanger, M. Abran, X. Intes, C. Casanova, and F. Lesage, J. Biomed. Opt. 15, 016006 (2010).
[CrossRef] [PubMed]

Aldroubi, A.

M. Unser and A. Aldroubi, Proc. IEEE 84, 626 (1996).
[CrossRef]

Arridge, S.

Arridge, S. R.

T. J. Rudge, V. Y. Soloviev, and S. R. Arridge, Opt. Lett. 35, 763 (2010).
[CrossRef] [PubMed]

S. R. Arridge and J. C. Schotland, Inverse Probl. 25, 123010(2009).
[CrossRef]

M. Schweiger and S. R. Arridge, TOAST package, http://web4.cs.ucl.ac.uk/research/vis/toast/ (2010).

Bangerth, W.

Bassi, A.

Bélanger, S.

S. Bélanger, M. Abran, X. Intes, C. Casanova, and F. Lesage, J. Biomed. Opt. 15, 016006 (2010).
[CrossRef] [PubMed]

Bevilacqua, F.

Casanova, C.

S. Bélanger, M. Abran, X. Intes, C. Casanova, and F. Lesage, J. Biomed. Opt. 15, 016006 (2010).
[CrossRef] [PubMed]

Cubeddu, R.

Cuccia, D.

Cuccia, D. J.

D'Andrea, C.

Dinten, J.-M.

N. Ducros, A. D. Silva, J.-M. Dinten, C. S. Seelamantula, M. Unser, and F. Peyrin, Med. Phys. 37, 2890 (2010).
[CrossRef] [PubMed]

Donoho, D.

D. Donoho, A. Maleki, and M. Shahram, Wavelab 850, http://www-stat.stanford.edu/~wavelab/ (2010).

Ducros, N.

C. D'Andrea, N. Ducros, A. Bassi, S. Arridge, and G. Valentini, Biomed. Opt. Express 1, 106 (2010).
[CrossRef]

N. Ducros, A. D. Silva, J.-M. Dinten, C. S. Seelamantula, M. Unser, and F. Peyrin, Med. Phys. 37, 2890 (2010).
[CrossRef] [PubMed]

Durkin, A. J.

Intes, X.

S. Bélanger, M. Abran, X. Intes, C. Casanova, and F. Lesage, J. Biomed. Opt. 15, 016006 (2010).
[CrossRef] [PubMed]

Joshi, A.

Konecky, S. D.

Lesage, F.

S. Bélanger, M. Abran, X. Intes, C. Casanova, and F. Lesage, J. Biomed. Opt. 15, 016006 (2010).
[CrossRef] [PubMed]

Lukic, V.

Maleki, A.

D. Donoho, A. Maleki, and M. Shahram, Wavelab 850, http://www-stat.stanford.edu/~wavelab/ (2010).

Markel, V. A.

Mazhar, A.

Peyrin, F.

N. Ducros, A. D. Silva, J.-M. Dinten, C. S. Seelamantula, M. Unser, and F. Peyrin, Med. Phys. 37, 2890 (2010).
[CrossRef] [PubMed]

Ripoll, J.

Rudge, T. J.

Schotland, J. C.

Schweiger, M.

M. Schweiger and S. R. Arridge, TOAST package, http://web4.cs.ucl.ac.uk/research/vis/toast/ (2010).

Seelamantula, C. S.

N. Ducros, A. D. Silva, J.-M. Dinten, C. S. Seelamantula, M. Unser, and F. Peyrin, Med. Phys. 37, 2890 (2010).
[CrossRef] [PubMed]

Sevick-Muraca, E. M.

Shahram, M.

D. Donoho, A. Maleki, and M. Shahram, Wavelab 850, http://www-stat.stanford.edu/~wavelab/ (2010).

Silva, A. D.

N. Ducros, A. D. Silva, J.-M. Dinten, C. S. Seelamantula, M. Unser, and F. Peyrin, Med. Phys. 37, 2890 (2010).
[CrossRef] [PubMed]

Soloviev, V. Y.

Tromberg, B. J.

Unser, M.

N. Ducros, A. D. Silva, J.-M. Dinten, C. S. Seelamantula, M. Unser, and F. Peyrin, Med. Phys. 37, 2890 (2010).
[CrossRef] [PubMed]

M. Unser and A. Aldroubi, Proc. IEEE 84, 626 (1996).
[CrossRef]

Valentini, G.

Biomed. Opt. Express

Inverse Probl.

S. R. Arridge and J. C. Schotland, Inverse Probl. 25, 123010(2009).
[CrossRef]

J. Biomed. Opt.

S. Bélanger, M. Abran, X. Intes, C. Casanova, and F. Lesage, J. Biomed. Opt. 15, 016006 (2010).
[CrossRef] [PubMed]

Med. Phys.

N. Ducros, A. D. Silva, J.-M. Dinten, C. S. Seelamantula, M. Unser, and F. Peyrin, Med. Phys. 37, 2890 (2010).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Proc. IEEE

M. Unser and A. Aldroubi, Proc. IEEE 84, 626 (1996).
[CrossRef]

Other

M. Schweiger and S. R. Arridge, TOAST package, http://web4.cs.ucl.ac.uk/research/vis/toast/ (2010).

D. Donoho, A. Maleki, and M. Shahram, Wavelab 850, http://www-stat.stanford.edu/~wavelab/ (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Wavelet compression of fluorescence images. (a) Fluorescence image acquired with a uniform source pattern. (b) From top to bottom, Haar, Daubechie, and Battle–Lemarié wavelets are considered. On the left, we display the 16 retained wavelet patterns. On the right, the compressed version of the upper image is depicted.

Fig. 2
Fig. 2

Reconstruction for different source patterns. The fluorescence images have been compressed to 24 Battle–Lemarié wavelet coefficients. (a) Standard scanning approach using 2048 sources positions (simulated); ϵ = 0.58 . (b) Wavelet approach using 32 patterns (simulated); ϵ = 0.70 . (c) Wavelet approach using 32 patterns (experimental); ϵ = 0.99 .

Tables (1)

Tables Icon

Table 1 Computation Times (s) of the Reconstructions Presented in Fig. 2 a

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

m = Wc ,
{ P ϕ j x ( r ) = s j ( r ) , P ϕ j m ( r ) = ϕ j x ( r ) c ( r ) d r ,
m j , k = D ϕ j m ( r ) d j , k ( r ) d r .
w j , k = ( φ j ψ j , k ) T ,
P Φ = S ,
P Ψ = D .
c * = W T ( W W T + α I ) 1 m ,

Metrics