Abstract

A method of direct measurement of near-field phase and intensity distribution of laser diodes employing a single-mode fiber interferometer is proposed and demonstrated. The phase and intensity of the output beam of the laser in the vicinity of the output facet are measured directly via interferometry. Using a 980nm laser diode as an example, we obtained a beam width of 0.9 and 3.6μm at the output facet in the vertical and horizontal axes, respectively. In addition, the phase information of the output beam was also obtained by using interferometry. This technique is particularly useful for laser diodes whose near-field phases are difficult to measure directly. The measured vertical and horizontal wavefront radius of curvatures of a laser diode are in good agreement with the calculation from Gaussian beam theory. Detailed understanding and measurement of the near-field phase and intensity distributions of light sources and optical components are essential for micro-optic designs with better mode matching to minimize the insertion loss.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. D. Herzog, M. S. Unlu, B. B. Goldberg, G. H. Rhodes, and C. Harder, Appl. Phys. Lett. 70, 688 (1997).
    [CrossRef]
  2. M. Iiyama, T. Kamiya, and H. Yanai, Appl. Opt. 17, 1965(1978).
    [CrossRef]
  3. M. Iiyama, T. Kamiya, and H. Yanai, Appl. Opt. 20, 4296(1981).
    [CrossRef]
  4. J. N. Walford, K. A. Nugent, A. Roberts, and R. E. Scholten, Appl. Opt. 38, 3508 (1999).
    [CrossRef]
  5. J. W. Goodman, in Fourier Optics (Roberts & Company, 2005).
  6. A. Yariv and P. Yeh, in Photonics: Optical Electronics in Modern Communications (Oxford U. Press, 2006).

1999

1997

W. D. Herzog, M. S. Unlu, B. B. Goldberg, G. H. Rhodes, and C. Harder, Appl. Phys. Lett. 70, 688 (1997).
[CrossRef]

1981

1978

Goldberg, B. B.

W. D. Herzog, M. S. Unlu, B. B. Goldberg, G. H. Rhodes, and C. Harder, Appl. Phys. Lett. 70, 688 (1997).
[CrossRef]

Goodman, J. W.

J. W. Goodman, in Fourier Optics (Roberts & Company, 2005).

Harder, C.

W. D. Herzog, M. S. Unlu, B. B. Goldberg, G. H. Rhodes, and C. Harder, Appl. Phys. Lett. 70, 688 (1997).
[CrossRef]

Herzog, W. D.

W. D. Herzog, M. S. Unlu, B. B. Goldberg, G. H. Rhodes, and C. Harder, Appl. Phys. Lett. 70, 688 (1997).
[CrossRef]

Iiyama, M.

Kamiya, T.

Nugent, K. A.

Rhodes, G. H.

W. D. Herzog, M. S. Unlu, B. B. Goldberg, G. H. Rhodes, and C. Harder, Appl. Phys. Lett. 70, 688 (1997).
[CrossRef]

Roberts, A.

Scholten, R. E.

Unlu, M. S.

W. D. Herzog, M. S. Unlu, B. B. Goldberg, G. H. Rhodes, and C. Harder, Appl. Phys. Lett. 70, 688 (1997).
[CrossRef]

Walford, J. N.

Yanai, H.

Yariv, A.

A. Yariv and P. Yeh, in Photonics: Optical Electronics in Modern Communications (Oxford U. Press, 2006).

Yeh, P.

A. Yariv and P. Yeh, in Photonics: Optical Electronics in Modern Communications (Oxford U. Press, 2006).

Appl. Opt.

Appl. Phys. Lett.

W. D. Herzog, M. S. Unlu, B. B. Goldberg, G. H. Rhodes, and C. Harder, Appl. Phys. Lett. 70, 688 (1997).
[CrossRef]

Other

J. W. Goodman, in Fourier Optics (Roberts & Company, 2005).

A. Yariv and P. Yeh, in Photonics: Optical Electronics in Modern Communications (Oxford U. Press, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Scheme of an SMF interferometer.

Fig. 2
Fig. 2

Experimental data of the beam widths and Gaussian beam fittings.

Fig. 3
Fig. 3

Radius curvature of the wavefront along with the propagating axis.

Fig. 4
Fig. 4

(a) Interference pattern captured by a CCD camera. (b) Fringe intensity distributions across the interference pattern and (c) its spatial frequency response via Fourier transform.

Fig. 5
Fig. 5

Relative phase distribution along with the (a)–(c) vertical axis and the (d)–(f) horizontal axis.

Metrics