Abstract

Optical-feedback cavity-enhanced absorption spectroscopy is demonstrated in the mid-IR by using a quantum cascade laser (emitting at 4.46μm). The laser linewidth reduction and frequency locking by selective optical feedback from the resonant cavity field turns out to be particularly advantageous in this spectral range: It allows strong cavity transmission, which compensates for low light sensitivity, especially when using room-temperature detectors. We obtain a noise equivalent absorption coefficient of 3×109/cm for 1s averaging of spectra composed by 100 independent points. At 4.46μm, this yields a detection limit of 35 parts in 1012 by volume for N2O at 50mbar, corresponding to 4×107 molecules/cm3, or still to 1fmol in the sample volume.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Morville, S. Kassi, M. Chenevier, and D. Romanini, Appl. Phys. B 80, 1027 (2005).
    [CrossRef]
  2. D. Romanini, M. Chenevier, S. Kassi, M. Schmidt, C. Valant, M. Ramonet, J. Lopez, and H.-J. Jost, Appl. Phys. B 83, 659 (2006).
    [CrossRef]
  3. S. Kassi, M. Chenevier, L. Gianfrani, A. Salhi, Y. Rouillard, A. Ouvrard, and D. Romanini, Opt. Express 14, 11442(2006).
    [CrossRef] [PubMed]
  4. E. R. T. Kerstel, R. Q. Iannone, M. Chenevier, S. Kassi, H.-J. Jost, and D. Romanini, Appl. Phys. B 85, 397 (2006).
    [CrossRef]
  5. A. A. Kosterev, A. L. Malinovsky, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, Appl. Opt. 40, 5522 (2001).
    [CrossRef]
  6. A. A. Kosterev and F. K. Tittel, IEEE J. Quantum Electron. 38, 582 (2002).
    [CrossRef]
  7. K. R. Parameswaran, D. I. Rosen, M. G. Allen, A. M. Ganz, and T. H. Risby, Appl. Opt. 48, B73 (2009).
    [CrossRef] [PubMed]
  8. J. B. Paul, L. Lapson, and J. G. Anderson, Appl. Opt. 40, 4904 (2001).
    [CrossRef]
  9. E. J. Moyer, D. S. Sayres, G. S. Engel, J. M. S. Clair, F. N. Keutsch, N. T. Allen, J. H. Kroll, and J. G. Anderson, Appl. Phys. B 92, 467 (2008).
    [CrossRef]
  10. M. Carras, G. Maisons, B. Simozrag, M. Garcia, O. Parillaud, and X. Marcadet, Appl. Phys. Lett. 96, 161105 (2010).
    [CrossRef]
  11. P. Laurent, A. Clairon, and C. Breant, IEEE J. Quantum Electron. 25, 1131 (1989).
    [CrossRef]

2010 (1)

M. Carras, G. Maisons, B. Simozrag, M. Garcia, O. Parillaud, and X. Marcadet, Appl. Phys. Lett. 96, 161105 (2010).
[CrossRef]

2009 (1)

2008 (1)

E. J. Moyer, D. S. Sayres, G. S. Engel, J. M. S. Clair, F. N. Keutsch, N. T. Allen, J. H. Kroll, and J. G. Anderson, Appl. Phys. B 92, 467 (2008).
[CrossRef]

2006 (3)

D. Romanini, M. Chenevier, S. Kassi, M. Schmidt, C. Valant, M. Ramonet, J. Lopez, and H.-J. Jost, Appl. Phys. B 83, 659 (2006).
[CrossRef]

E. R. T. Kerstel, R. Q. Iannone, M. Chenevier, S. Kassi, H.-J. Jost, and D. Romanini, Appl. Phys. B 85, 397 (2006).
[CrossRef]

S. Kassi, M. Chenevier, L. Gianfrani, A. Salhi, Y. Rouillard, A. Ouvrard, and D. Romanini, Opt. Express 14, 11442(2006).
[CrossRef] [PubMed]

2005 (1)

J. Morville, S. Kassi, M. Chenevier, and D. Romanini, Appl. Phys. B 80, 1027 (2005).
[CrossRef]

2002 (1)

A. A. Kosterev and F. K. Tittel, IEEE J. Quantum Electron. 38, 582 (2002).
[CrossRef]

2001 (2)

1989 (1)

P. Laurent, A. Clairon, and C. Breant, IEEE J. Quantum Electron. 25, 1131 (1989).
[CrossRef]

Allen, M. G.

Allen, N. T.

E. J. Moyer, D. S. Sayres, G. S. Engel, J. M. S. Clair, F. N. Keutsch, N. T. Allen, J. H. Kroll, and J. G. Anderson, Appl. Phys. B 92, 467 (2008).
[CrossRef]

Anderson, J. G.

E. J. Moyer, D. S. Sayres, G. S. Engel, J. M. S. Clair, F. N. Keutsch, N. T. Allen, J. H. Kroll, and J. G. Anderson, Appl. Phys. B 92, 467 (2008).
[CrossRef]

J. B. Paul, L. Lapson, and J. G. Anderson, Appl. Opt. 40, 4904 (2001).
[CrossRef]

Baillargeon, J. N.

Breant, C.

P. Laurent, A. Clairon, and C. Breant, IEEE J. Quantum Electron. 25, 1131 (1989).
[CrossRef]

Capasso, F.

Carras, M.

M. Carras, G. Maisons, B. Simozrag, M. Garcia, O. Parillaud, and X. Marcadet, Appl. Phys. Lett. 96, 161105 (2010).
[CrossRef]

Chenevier, M.

D. Romanini, M. Chenevier, S. Kassi, M. Schmidt, C. Valant, M. Ramonet, J. Lopez, and H.-J. Jost, Appl. Phys. B 83, 659 (2006).
[CrossRef]

S. Kassi, M. Chenevier, L. Gianfrani, A. Salhi, Y. Rouillard, A. Ouvrard, and D. Romanini, Opt. Express 14, 11442(2006).
[CrossRef] [PubMed]

E. R. T. Kerstel, R. Q. Iannone, M. Chenevier, S. Kassi, H.-J. Jost, and D. Romanini, Appl. Phys. B 85, 397 (2006).
[CrossRef]

J. Morville, S. Kassi, M. Chenevier, and D. Romanini, Appl. Phys. B 80, 1027 (2005).
[CrossRef]

Cho, A. Y.

Clair, J. M. S.

E. J. Moyer, D. S. Sayres, G. S. Engel, J. M. S. Clair, F. N. Keutsch, N. T. Allen, J. H. Kroll, and J. G. Anderson, Appl. Phys. B 92, 467 (2008).
[CrossRef]

Clairon, A.

P. Laurent, A. Clairon, and C. Breant, IEEE J. Quantum Electron. 25, 1131 (1989).
[CrossRef]

Engel, G. S.

E. J. Moyer, D. S. Sayres, G. S. Engel, J. M. S. Clair, F. N. Keutsch, N. T. Allen, J. H. Kroll, and J. G. Anderson, Appl. Phys. B 92, 467 (2008).
[CrossRef]

Ganz, A. M.

Garcia, M.

M. Carras, G. Maisons, B. Simozrag, M. Garcia, O. Parillaud, and X. Marcadet, Appl. Phys. Lett. 96, 161105 (2010).
[CrossRef]

Gianfrani, L.

Gmachl, C.

Hutchinson, A. L.

Iannone, R. Q.

E. R. T. Kerstel, R. Q. Iannone, M. Chenevier, S. Kassi, H.-J. Jost, and D. Romanini, Appl. Phys. B 85, 397 (2006).
[CrossRef]

Jost, H.-J.

E. R. T. Kerstel, R. Q. Iannone, M. Chenevier, S. Kassi, H.-J. Jost, and D. Romanini, Appl. Phys. B 85, 397 (2006).
[CrossRef]

D. Romanini, M. Chenevier, S. Kassi, M. Schmidt, C. Valant, M. Ramonet, J. Lopez, and H.-J. Jost, Appl. Phys. B 83, 659 (2006).
[CrossRef]

Kassi, S.

D. Romanini, M. Chenevier, S. Kassi, M. Schmidt, C. Valant, M. Ramonet, J. Lopez, and H.-J. Jost, Appl. Phys. B 83, 659 (2006).
[CrossRef]

E. R. T. Kerstel, R. Q. Iannone, M. Chenevier, S. Kassi, H.-J. Jost, and D. Romanini, Appl. Phys. B 85, 397 (2006).
[CrossRef]

S. Kassi, M. Chenevier, L. Gianfrani, A. Salhi, Y. Rouillard, A. Ouvrard, and D. Romanini, Opt. Express 14, 11442(2006).
[CrossRef] [PubMed]

J. Morville, S. Kassi, M. Chenevier, and D. Romanini, Appl. Phys. B 80, 1027 (2005).
[CrossRef]

Kerstel, E. R. T.

E. R. T. Kerstel, R. Q. Iannone, M. Chenevier, S. Kassi, H.-J. Jost, and D. Romanini, Appl. Phys. B 85, 397 (2006).
[CrossRef]

Keutsch, F. N.

E. J. Moyer, D. S. Sayres, G. S. Engel, J. M. S. Clair, F. N. Keutsch, N. T. Allen, J. H. Kroll, and J. G. Anderson, Appl. Phys. B 92, 467 (2008).
[CrossRef]

Kosterev, A. A.

Kroll, J. H.

E. J. Moyer, D. S. Sayres, G. S. Engel, J. M. S. Clair, F. N. Keutsch, N. T. Allen, J. H. Kroll, and J. G. Anderson, Appl. Phys. B 92, 467 (2008).
[CrossRef]

Lapson, L.

Laurent, P.

P. Laurent, A. Clairon, and C. Breant, IEEE J. Quantum Electron. 25, 1131 (1989).
[CrossRef]

Lopez, J.

D. Romanini, M. Chenevier, S. Kassi, M. Schmidt, C. Valant, M. Ramonet, J. Lopez, and H.-J. Jost, Appl. Phys. B 83, 659 (2006).
[CrossRef]

Maisons, G.

M. Carras, G. Maisons, B. Simozrag, M. Garcia, O. Parillaud, and X. Marcadet, Appl. Phys. Lett. 96, 161105 (2010).
[CrossRef]

Malinovsky, A. L.

Marcadet, X.

M. Carras, G. Maisons, B. Simozrag, M. Garcia, O. Parillaud, and X. Marcadet, Appl. Phys. Lett. 96, 161105 (2010).
[CrossRef]

Morville, J.

J. Morville, S. Kassi, M. Chenevier, and D. Romanini, Appl. Phys. B 80, 1027 (2005).
[CrossRef]

Moyer, E. J.

E. J. Moyer, D. S. Sayres, G. S. Engel, J. M. S. Clair, F. N. Keutsch, N. T. Allen, J. H. Kroll, and J. G. Anderson, Appl. Phys. B 92, 467 (2008).
[CrossRef]

Ouvrard, A.

Parameswaran, K. R.

Parillaud, O.

M. Carras, G. Maisons, B. Simozrag, M. Garcia, O. Parillaud, and X. Marcadet, Appl. Phys. Lett. 96, 161105 (2010).
[CrossRef]

Paul, J. B.

Ramonet, M.

D. Romanini, M. Chenevier, S. Kassi, M. Schmidt, C. Valant, M. Ramonet, J. Lopez, and H.-J. Jost, Appl. Phys. B 83, 659 (2006).
[CrossRef]

Risby, T. H.

Romanini, D.

E. R. T. Kerstel, R. Q. Iannone, M. Chenevier, S. Kassi, H.-J. Jost, and D. Romanini, Appl. Phys. B 85, 397 (2006).
[CrossRef]

S. Kassi, M. Chenevier, L. Gianfrani, A. Salhi, Y. Rouillard, A. Ouvrard, and D. Romanini, Opt. Express 14, 11442(2006).
[CrossRef] [PubMed]

D. Romanini, M. Chenevier, S. Kassi, M. Schmidt, C. Valant, M. Ramonet, J. Lopez, and H.-J. Jost, Appl. Phys. B 83, 659 (2006).
[CrossRef]

J. Morville, S. Kassi, M. Chenevier, and D. Romanini, Appl. Phys. B 80, 1027 (2005).
[CrossRef]

Rosen, D. I.

Rouillard, Y.

Salhi, A.

Sayres, D. S.

E. J. Moyer, D. S. Sayres, G. S. Engel, J. M. S. Clair, F. N. Keutsch, N. T. Allen, J. H. Kroll, and J. G. Anderson, Appl. Phys. B 92, 467 (2008).
[CrossRef]

Schmidt, M.

D. Romanini, M. Chenevier, S. Kassi, M. Schmidt, C. Valant, M. Ramonet, J. Lopez, and H.-J. Jost, Appl. Phys. B 83, 659 (2006).
[CrossRef]

Simozrag, B.

M. Carras, G. Maisons, B. Simozrag, M. Garcia, O. Parillaud, and X. Marcadet, Appl. Phys. Lett. 96, 161105 (2010).
[CrossRef]

Sivco, D. L.

Tittel, F. K.

Valant, C.

D. Romanini, M. Chenevier, S. Kassi, M. Schmidt, C. Valant, M. Ramonet, J. Lopez, and H.-J. Jost, Appl. Phys. B 83, 659 (2006).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. B (4)

E. J. Moyer, D. S. Sayres, G. S. Engel, J. M. S. Clair, F. N. Keutsch, N. T. Allen, J. H. Kroll, and J. G. Anderson, Appl. Phys. B 92, 467 (2008).
[CrossRef]

J. Morville, S. Kassi, M. Chenevier, and D. Romanini, Appl. Phys. B 80, 1027 (2005).
[CrossRef]

D. Romanini, M. Chenevier, S. Kassi, M. Schmidt, C. Valant, M. Ramonet, J. Lopez, and H.-J. Jost, Appl. Phys. B 83, 659 (2006).
[CrossRef]

E. R. T. Kerstel, R. Q. Iannone, M. Chenevier, S. Kassi, H.-J. Jost, and D. Romanini, Appl. Phys. B 85, 397 (2006).
[CrossRef]

Appl. Phys. Lett. (1)

M. Carras, G. Maisons, B. Simozrag, M. Garcia, O. Parillaud, and X. Marcadet, Appl. Phys. Lett. 96, 161105 (2010).
[CrossRef]

IEEE J. Quantum Electron. (2)

P. Laurent, A. Clairon, and C. Breant, IEEE J. Quantum Electron. 25, 1131 (1989).
[CrossRef]

A. A. Kosterev and F. K. Tittel, IEEE J. Quantum Electron. 38, 582 (2002).
[CrossRef]

Opt. Express (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

V-shaped cavity setup. Part of the resonant intracavity field gives frequency-selective OF. The PZT-mounted steering mirror controls the phase of the OF field. The laser is mounted on a translation stage to allow wider adjustment of the laser-cavity separation. A beam splitter is used to monitor the laser power.

Fig. 2
Fig. 2

OF-CEAS spectra of diluted air, 1:25 in dry N 2 (black curve), together with a HITRAN simulation (colored curves). Baseline offset in the OF-CEAS spectrum corresponds to the empty cavity losses. The inset displays a section of the photodetector signals, whose ratio gives the cavity transmission; note the large laser power increase in the presence of resonant cavity feedback.

Fig. 3
Fig. 3

Bottom graph, OF-CEAS spectra displaying linewidth broadening of CO 2 (2239.898, 2239.722, and 2239.652 cm 1 ) and N 2 O ( 2239.754 cm 1 ) lines as a function of total pressure for a constant air dilution factor (1:10 in dry nitrogen) at total pressures of 26, 52, 131, 185, 263, and 340 mbar . Baseline of spectra (from line profiles fit) has been subtracted. On top, linear dependence of the Lorentzian broadening (gray) and the line surface (black) for CO 2 (squares) and N 2 O (triangles) with increasing total pressure.

Metrics