Abstract

We report, for the first time to our knowledge, a radially polarized and passively Q-switched Yb-doped fiber laser. By using a Cr4+:YAG crystal as a saturable absorber and a photonic crystal grating as a polarization mirror, a radially polarized pulse is produced, which has 202W of peak power, 75ns duration, and ~92% polarization purity at a 56.6kHz repetition rate. The Q-switched pulse with radial polarization from the fiber laser would facilitate numerous applications.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Q. Zhan, Opt. Express 12, 3377 (2004).
    [CrossRef] [PubMed]
  2. H. Kavauchi, K. Yonezawa, Y. Kozawa, and S. Sato, Opt. Lett. 32, 1839 (2007).
    [CrossRef]
  3. V. G. Niziev and A. V. Nesterov, J. Phys. D 32, 1455 (1999).
    [CrossRef]
  4. M. Meier, V. Romano, and T. Feurer, Appl. Phys. A 86, 329 (2007).
    [CrossRef]
  5. D. Pohl, Appl. Phys. Lett. 20, 266 (1972).
    [CrossRef]
  6. J. L. Li, K. I. Ueda, M. Musha, L. X. Zhong, and A. Shirakawa, Opt. Lett. 33, 2686 (2008).
    [CrossRef] [PubMed]
  7. F. Enderli and T. Feurer, Opt. Lett. 34, 2030 (2009).
    [CrossRef] [PubMed]
  8. J. L. Li, K. I. Ueda, M. Musha, and A. Shirakawa, Opt. Lett. 31, 2969 (2006).
    [CrossRef] [PubMed]
  9. J. L. Li, K. I. Ueda, M. Musha, A. Shirakawa, and Z. M. Zhang, Opt. Lett. 32, 1360 (2007).
    [CrossRef] [PubMed]
  10. J. L. Li, K.-I. Ueda, A. Shirakawa, M. Musha, L.-X. Zhong, and Z.-M. Zhang, Laser Phys. Lett. 4, 814 (2007).
    [CrossRef]
  11. R. J. Zhou, B. I. Escamilla, J. W. Haus, P. E. Powers, and Q. Zhan, Appl. Phys. Lett. 95, 191111 (2009).
    [CrossRef]
  12. M. Fridman, G. Machavariani, N. Davidson, and A. A. Friesem, Appl. Phys. Lett. 93, 191104 (2008).
    [CrossRef]
  13. D. Lin, K. G. Xia, J. L. Li, R. X. Li, K. I. Ueda, G. Q. Li, and X. J. Li, Opt. Lett. 35, 2290 (2010).
    [CrossRef] [PubMed]
  14. J. L. Li, K. I. Ueda, L. X. Zhong, M. Musha, A. Shirakawa, and T. Sato, Opt. Express 16, 10841 (2008).
    [CrossRef] [PubMed]
  15. V. N. Philippov, A. V. Kiryanov, and S. Unger, IEEE Photon. Technol. Lett. 16, 57 (2004).
    [CrossRef]
  16. G. P. Lees and T. P. Newson, Electron. Lett. 32, 332 (1996).
    [CrossRef]
  17. J. L. Li, K. I. Ueda, M. Musha, and A. Shirakawa, Opt. Lett. 31, 1450 (2006).
    [CrossRef] [PubMed]
  18. P. Myslinski, J. Chrostowski, J. A. Koningstein, and J. R. Simpson, Appl. Opt. 32, 286 (1993).
    [CrossRef] [PubMed]

2010

2009

R. J. Zhou, B. I. Escamilla, J. W. Haus, P. E. Powers, and Q. Zhan, Appl. Phys. Lett. 95, 191111 (2009).
[CrossRef]

F. Enderli and T. Feurer, Opt. Lett. 34, 2030 (2009).
[CrossRef] [PubMed]

2008

2007

M. Meier, V. Romano, and T. Feurer, Appl. Phys. A 86, 329 (2007).
[CrossRef]

J. L. Li, K.-I. Ueda, A. Shirakawa, M. Musha, L.-X. Zhong, and Z.-M. Zhang, Laser Phys. Lett. 4, 814 (2007).
[CrossRef]

J. L. Li, K. I. Ueda, M. Musha, A. Shirakawa, and Z. M. Zhang, Opt. Lett. 32, 1360 (2007).
[CrossRef] [PubMed]

H. Kavauchi, K. Yonezawa, Y. Kozawa, and S. Sato, Opt. Lett. 32, 1839 (2007).
[CrossRef]

2006

2004

Q. Zhan, Opt. Express 12, 3377 (2004).
[CrossRef] [PubMed]

V. N. Philippov, A. V. Kiryanov, and S. Unger, IEEE Photon. Technol. Lett. 16, 57 (2004).
[CrossRef]

1999

V. G. Niziev and A. V. Nesterov, J. Phys. D 32, 1455 (1999).
[CrossRef]

1996

G. P. Lees and T. P. Newson, Electron. Lett. 32, 332 (1996).
[CrossRef]

1993

1972

D. Pohl, Appl. Phys. Lett. 20, 266 (1972).
[CrossRef]

Chrostowski, J.

Davidson, N.

M. Fridman, G. Machavariani, N. Davidson, and A. A. Friesem, Appl. Phys. Lett. 93, 191104 (2008).
[CrossRef]

Enderli, F.

Escamilla, B. I.

R. J. Zhou, B. I. Escamilla, J. W. Haus, P. E. Powers, and Q. Zhan, Appl. Phys. Lett. 95, 191111 (2009).
[CrossRef]

Feurer, T.

F. Enderli and T. Feurer, Opt. Lett. 34, 2030 (2009).
[CrossRef] [PubMed]

M. Meier, V. Romano, and T. Feurer, Appl. Phys. A 86, 329 (2007).
[CrossRef]

Fridman, M.

M. Fridman, G. Machavariani, N. Davidson, and A. A. Friesem, Appl. Phys. Lett. 93, 191104 (2008).
[CrossRef]

Friesem, A. A.

M. Fridman, G. Machavariani, N. Davidson, and A. A. Friesem, Appl. Phys. Lett. 93, 191104 (2008).
[CrossRef]

Haus, J. W.

R. J. Zhou, B. I. Escamilla, J. W. Haus, P. E. Powers, and Q. Zhan, Appl. Phys. Lett. 95, 191111 (2009).
[CrossRef]

Kavauchi, H.

Kiryanov, A. V.

V. N. Philippov, A. V. Kiryanov, and S. Unger, IEEE Photon. Technol. Lett. 16, 57 (2004).
[CrossRef]

Koningstein, J. A.

Kozawa, Y.

Lees, G. P.

G. P. Lees and T. P. Newson, Electron. Lett. 32, 332 (1996).
[CrossRef]

Li, G. Q.

Li, J. L.

Li, R. X.

Li, X. J.

Lin, D.

Machavariani, G.

M. Fridman, G. Machavariani, N. Davidson, and A. A. Friesem, Appl. Phys. Lett. 93, 191104 (2008).
[CrossRef]

Meier, M.

M. Meier, V. Romano, and T. Feurer, Appl. Phys. A 86, 329 (2007).
[CrossRef]

Musha, M.

Myslinski, P.

Nesterov, A. V.

V. G. Niziev and A. V. Nesterov, J. Phys. D 32, 1455 (1999).
[CrossRef]

Newson, T. P.

G. P. Lees and T. P. Newson, Electron. Lett. 32, 332 (1996).
[CrossRef]

Niziev, V. G.

V. G. Niziev and A. V. Nesterov, J. Phys. D 32, 1455 (1999).
[CrossRef]

Philippov, V. N.

V. N. Philippov, A. V. Kiryanov, and S. Unger, IEEE Photon. Technol. Lett. 16, 57 (2004).
[CrossRef]

Pohl, D.

D. Pohl, Appl. Phys. Lett. 20, 266 (1972).
[CrossRef]

Powers, P. E.

R. J. Zhou, B. I. Escamilla, J. W. Haus, P. E. Powers, and Q. Zhan, Appl. Phys. Lett. 95, 191111 (2009).
[CrossRef]

Romano, V.

M. Meier, V. Romano, and T. Feurer, Appl. Phys. A 86, 329 (2007).
[CrossRef]

Sato, S.

Sato, T.

Shirakawa, A.

Simpson, J. R.

Ueda, K. I.

Ueda, K.-I.

J. L. Li, K.-I. Ueda, A. Shirakawa, M. Musha, L.-X. Zhong, and Z.-M. Zhang, Laser Phys. Lett. 4, 814 (2007).
[CrossRef]

Unger, S.

V. N. Philippov, A. V. Kiryanov, and S. Unger, IEEE Photon. Technol. Lett. 16, 57 (2004).
[CrossRef]

Xia, K. G.

Yonezawa, K.

Zhan, Q.

R. J. Zhou, B. I. Escamilla, J. W. Haus, P. E. Powers, and Q. Zhan, Appl. Phys. Lett. 95, 191111 (2009).
[CrossRef]

Q. Zhan, Opt. Express 12, 3377 (2004).
[CrossRef] [PubMed]

Zhang, Z. M.

Zhang, Z.-M.

J. L. Li, K.-I. Ueda, A. Shirakawa, M. Musha, L.-X. Zhong, and Z.-M. Zhang, Laser Phys. Lett. 4, 814 (2007).
[CrossRef]

Zhong, L. X.

Zhong, L.-X.

J. L. Li, K.-I. Ueda, A. Shirakawa, M. Musha, L.-X. Zhong, and Z.-M. Zhang, Laser Phys. Lett. 4, 814 (2007).
[CrossRef]

Zhou, R. J.

R. J. Zhou, B. I. Escamilla, J. W. Haus, P. E. Powers, and Q. Zhan, Appl. Phys. Lett. 95, 191111 (2009).
[CrossRef]

Appl. Opt.

Appl. Phys. A

M. Meier, V. Romano, and T. Feurer, Appl. Phys. A 86, 329 (2007).
[CrossRef]

Appl. Phys. Lett.

D. Pohl, Appl. Phys. Lett. 20, 266 (1972).
[CrossRef]

R. J. Zhou, B. I. Escamilla, J. W. Haus, P. E. Powers, and Q. Zhan, Appl. Phys. Lett. 95, 191111 (2009).
[CrossRef]

M. Fridman, G. Machavariani, N. Davidson, and A. A. Friesem, Appl. Phys. Lett. 93, 191104 (2008).
[CrossRef]

Electron. Lett.

G. P. Lees and T. P. Newson, Electron. Lett. 32, 332 (1996).
[CrossRef]

IEEE Photon. Technol. Lett.

V. N. Philippov, A. V. Kiryanov, and S. Unger, IEEE Photon. Technol. Lett. 16, 57 (2004).
[CrossRef]

J. Phys. D

V. G. Niziev and A. V. Nesterov, J. Phys. D 32, 1455 (1999).
[CrossRef]

Laser Phys. Lett.

J. L. Li, K.-I. Ueda, A. Shirakawa, M. Musha, L.-X. Zhong, and Z.-M. Zhang, Laser Phys. Lett. 4, 814 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the passively Q-switched and radially polarized fiber laser.

Fig. 2
Fig. 2

Laser powers versus the incident pump power when applying different absorbers.

Fig. 3
Fig. 3

(a) Far- and (b) near-field intensity distributions of the full beam profile and (c)–(f) far-field intensity distribution when the laser beam passes through a polarizer with different orientations of the polarizer axis.

Fig. 4
Fig. 4

Repetition rate and pulse duration as functions of incident pump power when the SA had different initial transmittances.

Fig. 5
Fig. 5

Captured oscilloscope traces of (a) pulse envelope and (b) train at 6 W of pumping power and T 0 = 95 % .

Fig. 6
Fig. 6

Captured oscilloscope traces of (a) pulse envelope and (b) train at 6 W of pumping power and T 0 = 70 % .

Metrics