Abstract

We propose a design for a free space optical communications (FSOC) receiver terminal that offers an improved field of view (FOV) in comparison to conventional FSOC receivers. The design utilizes a microlens to couple the incident optical signal into an individual fiber in a bundle routed to remote optical detectors. Each fiber in the bundle collects power from a solid angle of space; utilizing multiple fibers enhances the total FOV of the receiver over typical single-fiber designs. The microlens-to-fiber-bundle design is scalable and modular and can be replicated in an array to increase aperture size. The microlens is moved laterally with a piezoelectric transducer to optimize power coupling into a given fiber core in the bundle as the source appears to move due to relative motion between the transmitter and receiver. The optimum position of the lens array is determined via a feedback loop whose input is derived from a position sensing detector behind another lens. Light coupled into like fibers in each array cell is optically combined (in fiber) before illuminating discrete detectors.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. AOptix, “Defense Lasercom,” http://www.aoptix.com/defense_lasercom.html.
  2. Y. Dikmelik and F. M. Davidson, Appl. Opt. 44, 4946 (2005).
    [CrossRef] [PubMed]
  3. S. Spaunhorst, P. G. LoPresti, S. Pondelik, H. Refai, and M. Atiquzzaman, Proc. SPIE 7324, 73240H (2009).
    [CrossRef]
  4. C.Z.Rosen, B.V.Hiremath, and R.E.Newnham, eds., Piezoelectricity (Springer-Verlag, 1992).
  5. E. Hecht, Optics (Addison Wesley Longman, 1998).
  6. Neptec, “Pump combiner--product description,” http://www.neptecos.com/files/Pump_Combiner.neptec.pdf.
  7. N. Agrawal and C. C. Davis, Proc. SPIE 7091, 709107(2008).
    [CrossRef]
  8. L. M. Wasiczko, I. I. Smolyaninov, and C. C. Davis, Proc. SPIE 5160, 133 (2004).
    [CrossRef]
  9. P. G. LoPresti, C. Kiister, S. Spaunhorst, and H. Refai, Proc. SPIE 6951, 69510N (2008).
    [CrossRef]

2009

S. Spaunhorst, P. G. LoPresti, S. Pondelik, H. Refai, and M. Atiquzzaman, Proc. SPIE 7324, 73240H (2009).
[CrossRef]

2008

N. Agrawal and C. C. Davis, Proc. SPIE 7091, 709107(2008).
[CrossRef]

P. G. LoPresti, C. Kiister, S. Spaunhorst, and H. Refai, Proc. SPIE 6951, 69510N (2008).
[CrossRef]

2005

2004

L. M. Wasiczko, I. I. Smolyaninov, and C. C. Davis, Proc. SPIE 5160, 133 (2004).
[CrossRef]

Agrawal, N.

N. Agrawal and C. C. Davis, Proc. SPIE 7091, 709107(2008).
[CrossRef]

Atiquzzaman, M.

S. Spaunhorst, P. G. LoPresti, S. Pondelik, H. Refai, and M. Atiquzzaman, Proc. SPIE 7324, 73240H (2009).
[CrossRef]

Davidson, F. M.

Davis, C. C.

N. Agrawal and C. C. Davis, Proc. SPIE 7091, 709107(2008).
[CrossRef]

L. M. Wasiczko, I. I. Smolyaninov, and C. C. Davis, Proc. SPIE 5160, 133 (2004).
[CrossRef]

Dikmelik, Y.

Hecht, E.

E. Hecht, Optics (Addison Wesley Longman, 1998).

Kiister, C.

P. G. LoPresti, C. Kiister, S. Spaunhorst, and H. Refai, Proc. SPIE 6951, 69510N (2008).
[CrossRef]

LoPresti, P. G.

S. Spaunhorst, P. G. LoPresti, S. Pondelik, H. Refai, and M. Atiquzzaman, Proc. SPIE 7324, 73240H (2009).
[CrossRef]

P. G. LoPresti, C. Kiister, S. Spaunhorst, and H. Refai, Proc. SPIE 6951, 69510N (2008).
[CrossRef]

Pondelik, S.

S. Spaunhorst, P. G. LoPresti, S. Pondelik, H. Refai, and M. Atiquzzaman, Proc. SPIE 7324, 73240H (2009).
[CrossRef]

Refai, H.

S. Spaunhorst, P. G. LoPresti, S. Pondelik, H. Refai, and M. Atiquzzaman, Proc. SPIE 7324, 73240H (2009).
[CrossRef]

P. G. LoPresti, C. Kiister, S. Spaunhorst, and H. Refai, Proc. SPIE 6951, 69510N (2008).
[CrossRef]

Smolyaninov, I. I.

L. M. Wasiczko, I. I. Smolyaninov, and C. C. Davis, Proc. SPIE 5160, 133 (2004).
[CrossRef]

Spaunhorst, S.

S. Spaunhorst, P. G. LoPresti, S. Pondelik, H. Refai, and M. Atiquzzaman, Proc. SPIE 7324, 73240H (2009).
[CrossRef]

P. G. LoPresti, C. Kiister, S. Spaunhorst, and H. Refai, Proc. SPIE 6951, 69510N (2008).
[CrossRef]

Wasiczko, L. M.

L. M. Wasiczko, I. I. Smolyaninov, and C. C. Davis, Proc. SPIE 5160, 133 (2004).
[CrossRef]

Appl. Opt.

Proc. SPIE

S. Spaunhorst, P. G. LoPresti, S. Pondelik, H. Refai, and M. Atiquzzaman, Proc. SPIE 7324, 73240H (2009).
[CrossRef]

N. Agrawal and C. C. Davis, Proc. SPIE 7091, 709107(2008).
[CrossRef]

L. M. Wasiczko, I. I. Smolyaninov, and C. C. Davis, Proc. SPIE 5160, 133 (2004).
[CrossRef]

P. G. LoPresti, C. Kiister, S. Spaunhorst, and H. Refai, Proc. SPIE 6951, 69510N (2008).
[CrossRef]

Other

AOptix, “Defense Lasercom,” http://www.aoptix.com/defense_lasercom.html.

C.Z.Rosen, B.V.Hiremath, and R.E.Newnham, eds., Piezoelectricity (Springer-Verlag, 1992).

E. Hecht, Optics (Addison Wesley Longman, 1998).

Neptec, “Pump combiner--product description,” http://www.neptecos.com/files/Pump_Combiner.neptec.pdf.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Conceptual design of lens array/fiber bundle wide FOV FSOC receiver. A PSD controls the position of a microlens array such that an incident communications beam is always coupled into one fiber of a bundle behind each microlens in the array. Light coupled into like-positioned fibers in each array cell is optically combined and routed to a remote set of detectors.

Fig. 2
Fig. 2

Experimental setup showing three adjacent large core fibers placed in the focal plane of one microlens of an array of 1 mm microlenses. The entire system is rotated about the principal microlens to measure the effects of the angular misalignment of the receiver.

Fig. 3
Fig. 3

Simulation of the focal point movement when an incoming optical communication signal strikes a microlens at incident angles of 0 ° , 5 ° , 10 ° , 15 ° , 20 ° , and 25 ° . The three vertical lines on the right of the figure show the distance in the focal plane traversed by a single fiber (left), three fibers (center), and the same three fibers with 100 µm of translation movement (right); these distances show increased FOV achieved with the fiber bundle approach.

Fig. 4
Fig. 4

Results of receiver angular rotation coupled with translational PZT motion to expand the system FOV while mitigating cladding misalignment.

Metrics