Abstract

We present the theoretical concept of an optical isolator based on resonance splitting in a silicon ring resonator covered with a magneto-optical polymer cladding. For this task, a perturbation method is derived for the modes in the cylindrical coordinate system. A polymer magneto-optical cladding causing a 0.01 amplitude of the off- diagonal element of the dielectric tensor is assumed. It is shown that the derived resonance splitting of the clockwise and counterclockwise modes increases for smaller ring radii. For the ring with a radius of approximately 1.5μm, a 29GHz splitting is demonstrated. An integrated optical isolator with a 10μm geometrical footprint is proposed based on a critically coupled ring resonator.

© 2010 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Integrated TE and TM optical circulators on ultra-low-loss silicon nitride platform

Paolo Pintus, Fabrizio Di Pasquale, and John E. Bowers
Opt. Express 21(4) 5041-5052 (2013)

Design of transverse electric ring isolators for ultra-low-loss Si3N4waveguides based on the finite element method

Paolo Pintus, Fabrizio Di Pasquale, and John E. Bowers
Opt. Lett. 36(23) 4599-4601 (2011)

Silicon ring isolators with bonded nonreciprocal magneto-optic garnets

Ming-Chun Tien, Tetsuya Mizumoto, Paolo Pintus, Herbert Kromer, and John E. Bowers
Opt. Express 19(12) 11740-11745 (2011)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription