Abstract

In this Letter we present the first (to our knowledge) demonstration of material modification using tightly focused single femtosecond laser vortex pulses. Double-charge femtosecond vortices were synthesized with a polarization-singularity beam converter based on light propagation in a uniaxial anisotropic medium and then focused using moderate- and high-NA optics (viz., NA=0.45 and 0.9) to ablate fused silica and soda-lime glass. By controlling the pulse energy, we consistently machine micrometer-size ring-shaped structures with <100nm uniform groove thickness.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Picón, J. Mompart, J. R. Vázquez de Aldana, L. Plaja, G. F. Calvo, and L. Roso, Opt. Express 18, 3660 (2010).
    [CrossRef] [PubMed]
  2. R. Ling-Ling, Q. Shi-Liang, and G. Zhong-Yi, Chin. Phys. B 19, 034204 (2010).
    [CrossRef]
  3. Y. Tokizane, K. Oka, and R. Morita, Opt. Express 17, 14517 (2009).
    [CrossRef]
  4. V. G. Shvedov, C. Hnatovsky, W. Krolikowski, and A. V. Rode, Opt. Lett. 35, 2660 (2010).
    [CrossRef] [PubMed]
  5. A. Volyar and T. Fadeyeva, Opt. Spectrosc. 96, 96 (2004).
    [CrossRef]
  6. A. Ben-Yakar and R. L. Byer, J. Appl. Phys. 96, 5316 (2004).
    [CrossRef]
  7. Y. Iketaki, T. Watanabe, N. Bokor, and M. Fujii, Opt. Lett. 32, 2357 (2007).
    [CrossRef] [PubMed]
  8. E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, Phys. Rev. B 73, 214101 (2006).
    [CrossRef]

2010

2009

2007

2006

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, Phys. Rev. B 73, 214101 (2006).
[CrossRef]

2004

A. Volyar and T. Fadeyeva, Opt. Spectrosc. 96, 96 (2004).
[CrossRef]

A. Ben-Yakar and R. L. Byer, J. Appl. Phys. 96, 5316 (2004).
[CrossRef]

Ben-Yakar, A.

A. Ben-Yakar and R. L. Byer, J. Appl. Phys. 96, 5316 (2004).
[CrossRef]

Bokor, N.

Byer, R. L.

A. Ben-Yakar and R. L. Byer, J. Appl. Phys. 96, 5316 (2004).
[CrossRef]

Calvo, G. F.

Fadeyeva, T.

A. Volyar and T. Fadeyeva, Opt. Spectrosc. 96, 96 (2004).
[CrossRef]

Fujii, M.

Gamaly, E. G.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, Phys. Rev. B 73, 214101 (2006).
[CrossRef]

Hallo, L.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, Phys. Rev. B 73, 214101 (2006).
[CrossRef]

Hnatovsky, C.

Iketaki, Y.

Juodkazis, S.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, Phys. Rev. B 73, 214101 (2006).
[CrossRef]

Krolikowski, W.

Ling-Ling, R.

R. Ling-Ling, Q. Shi-Liang, and G. Zhong-Yi, Chin. Phys. B 19, 034204 (2010).
[CrossRef]

Luther-Davies, B.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, Phys. Rev. B 73, 214101 (2006).
[CrossRef]

Misawa, H.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, Phys. Rev. B 73, 214101 (2006).
[CrossRef]

Mompart, J.

Morita, R.

Nicolai, P.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, Phys. Rev. B 73, 214101 (2006).
[CrossRef]

Nishimura, K.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, Phys. Rev. B 73, 214101 (2006).
[CrossRef]

Oka, K.

Picón, A.

Plaja, L.

Rode, A. V.

Roso, L.

Shi-Liang, Q.

R. Ling-Ling, Q. Shi-Liang, and G. Zhong-Yi, Chin. Phys. B 19, 034204 (2010).
[CrossRef]

Shvedov, V. G.

Tikhonchuk, V. T.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, Phys. Rev. B 73, 214101 (2006).
[CrossRef]

Tokizane, Y.

Vázquez de Aldana, J. R.

Volyar, A.

A. Volyar and T. Fadeyeva, Opt. Spectrosc. 96, 96 (2004).
[CrossRef]

Watanabe, T.

Zhong-Yi, G.

R. Ling-Ling, Q. Shi-Liang, and G. Zhong-Yi, Chin. Phys. B 19, 034204 (2010).
[CrossRef]

Chin. Phys. B

R. Ling-Ling, Q. Shi-Liang, and G. Zhong-Yi, Chin. Phys. B 19, 034204 (2010).
[CrossRef]

J. Appl. Phys.

A. Ben-Yakar and R. L. Byer, J. Appl. Phys. 96, 5316 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Spectrosc.

A. Volyar and T. Fadeyeva, Opt. Spectrosc. 96, 96 (2004).
[CrossRef]

Phys. Rev. B

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, Phys. Rev. B 73, 214101 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Setup for the generation of double-charge femtosecond vortex pulses and materials processing with objective O1. BF, beam filter viz., an aperture 1 mm in diameter located 5 m from the beam converter BC; λ / 4 , achromatic quarter-wave plate; L1, negative lens ( 50 mm ); CR, 10-mm-long c-cut C a CO 3 crystal; L2, positive lens ( + 125 mm ); PBS, polarization beam splitter; IB and VB, CCD images ( 6.4 mm × 4.2 mm ) of the incident and vortex beams, respectively; NB, nonvortex beam that is removed from the system; S, glass sample. (b) Simulated (top) and experimental (bottom) intensity distributions of a focused polarization-singularity vortex beam in the x z and x y planes. O2, imaging objective; CCD images show the intensity distribution in the x y plane at the focus of O1 with NA = 0.45 .

Fig. 2
Fig. 2

Surface profile of a Si O 2 sample ablated with double-charge single 150 nJ femtosecond vortex pulses using NA = 0.45 focusing optic. Ablation rings are separated by 5 μm .

Fig. 3
Fig. 3

Ablation of soda-lime glass with double-charge single femtosecond vortex pulses using an NA = 0.9 focusing optic. (a) Ablation rings produced at a pulse energy of 100 , 150 , 250 , and 700 nJ from left to right. (b) Cavities produced at a pulse energy of 1.5 μJ . (c) Region of a 200 μm × 200 μm array produced at a pulse energy of 250 nJ . Ablation rings are separated by 5 μm .

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I = 2 | l | + 1 r 2 | l | | l | ! π exp ( 2 r 2 / ( w 0 | ξ | ) 2 ) ( w 0 | ξ | ) 2 ( | l | + 1 ) P ,
I = 2 | l | | l | exp ( | l | ) | l | ! π ( w 0 | ξ | ) 2 P

Metrics