Abstract

We demonstrate that by an asymmetric coupling of two nonlinear waveguiding cores to the third strongly absorptive core, it is possible to realize single-photon generation on demand from an input coherent state. This three-core fiber setup can also be implemented for achieving strong photon-number squeezing even for large losses in side cores.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Lounis and M. Orrit, Rep. Prog. Phys. 68, 1129 (2005).
    [CrossRef]
  2. S. Kilin and D. Horoshko, Phys. Rev. Lett. 74, 5206 (1995).
    [CrossRef] [PubMed]
  3. D. T. Pegg, L. S. Phillips, and S. M. Barnett, Phys. Rev. Lett. 81, 1604 (1998).
    [CrossRef]
  4. S. M. Barnett and D. T. Pegg, Phys. Rev. A 60, 4965 (1999).
    [CrossRef]
  5. W. Leonski, Phys. Rev. A 54, 3369 (1996).
    [CrossRef] [PubMed]
  6. W. Leonski and A. Miranowicz, J. Opt. B 6, S37 (2004).
    [CrossRef]
  7. H. Ezaki, E. Hanamura, and Y. Yamamoto, Phys. Rev. Lett. 83, 3558 (1999).
    [CrossRef]
  8. T. Hong, M. W. Jack, and M. Yamashita, Phys. Rev. A 70, 013814 (2004).
    [CrossRef]
  9. D. Mogilevtsev, T. Tyc, and N. Korolkova, Phys. Rev. A 79, 053832 (2009).
    [CrossRef]
  10. V. Shchesnovich and D. Mogilevtsev, “Quantum non-locality by a local dissipation in the Bose-Hubbard model: boson-pair dissipation channel and a polynomial decay of population,” Phys. Rev. A (to be published).
  11. E. C. Magi, L. B. Fu, H. C. Nguyen, M. R. E. Lamont, D. I. Yeom, and B. J. Eggleton, Opt. Express 15, 10324 (2007).
    [CrossRef] [PubMed]
  12. E. A. Romanova, A. I. Konyukhov, D. Furniss, A. B. Seddon, and T. M. Benson, J. Lightwave Technol. 27, 3275 (2009).
    [CrossRef]
  13. K. Nagayama, M. Kakui, M. Matsui, T. Saitoh, and Y. Chigusa, Electron. Lett. 38, 1168 (2002).
    [CrossRef]
  14. A. Cerqueira, Rep. Prog. Phys. 73, 024401 (2010).
    [CrossRef]

2010 (1)

A. Cerqueira, Rep. Prog. Phys. 73, 024401 (2010).
[CrossRef]

2009 (2)

2007 (1)

2005 (1)

B. Lounis and M. Orrit, Rep. Prog. Phys. 68, 1129 (2005).
[CrossRef]

2004 (2)

W. Leonski and A. Miranowicz, J. Opt. B 6, S37 (2004).
[CrossRef]

T. Hong, M. W. Jack, and M. Yamashita, Phys. Rev. A 70, 013814 (2004).
[CrossRef]

2002 (1)

K. Nagayama, M. Kakui, M. Matsui, T. Saitoh, and Y. Chigusa, Electron. Lett. 38, 1168 (2002).
[CrossRef]

1999 (2)

H. Ezaki, E. Hanamura, and Y. Yamamoto, Phys. Rev. Lett. 83, 3558 (1999).
[CrossRef]

S. M. Barnett and D. T. Pegg, Phys. Rev. A 60, 4965 (1999).
[CrossRef]

1998 (1)

D. T. Pegg, L. S. Phillips, and S. M. Barnett, Phys. Rev. Lett. 81, 1604 (1998).
[CrossRef]

1996 (1)

W. Leonski, Phys. Rev. A 54, 3369 (1996).
[CrossRef] [PubMed]

1995 (1)

S. Kilin and D. Horoshko, Phys. Rev. Lett. 74, 5206 (1995).
[CrossRef] [PubMed]

Barnett, S. M.

S. M. Barnett and D. T. Pegg, Phys. Rev. A 60, 4965 (1999).
[CrossRef]

D. T. Pegg, L. S. Phillips, and S. M. Barnett, Phys. Rev. Lett. 81, 1604 (1998).
[CrossRef]

Benson, T. M.

Cerqueira, A.

A. Cerqueira, Rep. Prog. Phys. 73, 024401 (2010).
[CrossRef]

Chigusa, Y.

K. Nagayama, M. Kakui, M. Matsui, T. Saitoh, and Y. Chigusa, Electron. Lett. 38, 1168 (2002).
[CrossRef]

Eggleton, B. J.

Ezaki, H.

H. Ezaki, E. Hanamura, and Y. Yamamoto, Phys. Rev. Lett. 83, 3558 (1999).
[CrossRef]

Fu, L. B.

Furniss, D.

Hanamura, E.

H. Ezaki, E. Hanamura, and Y. Yamamoto, Phys. Rev. Lett. 83, 3558 (1999).
[CrossRef]

Hong, T.

T. Hong, M. W. Jack, and M. Yamashita, Phys. Rev. A 70, 013814 (2004).
[CrossRef]

Horoshko, D.

S. Kilin and D. Horoshko, Phys. Rev. Lett. 74, 5206 (1995).
[CrossRef] [PubMed]

Jack, M. W.

T. Hong, M. W. Jack, and M. Yamashita, Phys. Rev. A 70, 013814 (2004).
[CrossRef]

Kakui, M.

K. Nagayama, M. Kakui, M. Matsui, T. Saitoh, and Y. Chigusa, Electron. Lett. 38, 1168 (2002).
[CrossRef]

Kilin, S.

S. Kilin and D. Horoshko, Phys. Rev. Lett. 74, 5206 (1995).
[CrossRef] [PubMed]

Konyukhov, A. I.

Korolkova, N.

D. Mogilevtsev, T. Tyc, and N. Korolkova, Phys. Rev. A 79, 053832 (2009).
[CrossRef]

Lamont, M. R. E.

Leonski, W.

W. Leonski and A. Miranowicz, J. Opt. B 6, S37 (2004).
[CrossRef]

W. Leonski, Phys. Rev. A 54, 3369 (1996).
[CrossRef] [PubMed]

Lounis, B.

B. Lounis and M. Orrit, Rep. Prog. Phys. 68, 1129 (2005).
[CrossRef]

Magi, E. C.

Matsui, M.

K. Nagayama, M. Kakui, M. Matsui, T. Saitoh, and Y. Chigusa, Electron. Lett. 38, 1168 (2002).
[CrossRef]

Miranowicz, A.

W. Leonski and A. Miranowicz, J. Opt. B 6, S37 (2004).
[CrossRef]

Mogilevtsev, D.

D. Mogilevtsev, T. Tyc, and N. Korolkova, Phys. Rev. A 79, 053832 (2009).
[CrossRef]

V. Shchesnovich and D. Mogilevtsev, “Quantum non-locality by a local dissipation in the Bose-Hubbard model: boson-pair dissipation channel and a polynomial decay of population,” Phys. Rev. A (to be published).

Nagayama, K.

K. Nagayama, M. Kakui, M. Matsui, T. Saitoh, and Y. Chigusa, Electron. Lett. 38, 1168 (2002).
[CrossRef]

Nguyen, H. C.

Orrit, M.

B. Lounis and M. Orrit, Rep. Prog. Phys. 68, 1129 (2005).
[CrossRef]

Pegg, D. T.

S. M. Barnett and D. T. Pegg, Phys. Rev. A 60, 4965 (1999).
[CrossRef]

D. T. Pegg, L. S. Phillips, and S. M. Barnett, Phys. Rev. Lett. 81, 1604 (1998).
[CrossRef]

Phillips, L. S.

D. T. Pegg, L. S. Phillips, and S. M. Barnett, Phys. Rev. Lett. 81, 1604 (1998).
[CrossRef]

Romanova, E. A.

Saitoh, T.

K. Nagayama, M. Kakui, M. Matsui, T. Saitoh, and Y. Chigusa, Electron. Lett. 38, 1168 (2002).
[CrossRef]

Seddon, A. B.

Shchesnovich, V.

V. Shchesnovich and D. Mogilevtsev, “Quantum non-locality by a local dissipation in the Bose-Hubbard model: boson-pair dissipation channel and a polynomial decay of population,” Phys. Rev. A (to be published).

Tyc, T.

D. Mogilevtsev, T. Tyc, and N. Korolkova, Phys. Rev. A 79, 053832 (2009).
[CrossRef]

Yamamoto, Y.

H. Ezaki, E. Hanamura, and Y. Yamamoto, Phys. Rev. Lett. 83, 3558 (1999).
[CrossRef]

Yamashita, M.

T. Hong, M. W. Jack, and M. Yamashita, Phys. Rev. A 70, 013814 (2004).
[CrossRef]

Yeom, D. I.

Electron. Lett. (1)

K. Nagayama, M. Kakui, M. Matsui, T. Saitoh, and Y. Chigusa, Electron. Lett. 38, 1168 (2002).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. B (1)

W. Leonski and A. Miranowicz, J. Opt. B 6, S37 (2004).
[CrossRef]

Opt. Express (1)

Phys. Rev. A (5)

T. Hong, M. W. Jack, and M. Yamashita, Phys. Rev. A 70, 013814 (2004).
[CrossRef]

D. Mogilevtsev, T. Tyc, and N. Korolkova, Phys. Rev. A 79, 053832 (2009).
[CrossRef]

V. Shchesnovich and D. Mogilevtsev, “Quantum non-locality by a local dissipation in the Bose-Hubbard model: boson-pair dissipation channel and a polynomial decay of population,” Phys. Rev. A (to be published).

S. M. Barnett and D. T. Pegg, Phys. Rev. A 60, 4965 (1999).
[CrossRef]

W. Leonski, Phys. Rev. A 54, 3369 (1996).
[CrossRef] [PubMed]

Phys. Rev. Lett. (3)

S. Kilin and D. Horoshko, Phys. Rev. Lett. 74, 5206 (1995).
[CrossRef] [PubMed]

D. T. Pegg, L. S. Phillips, and S. M. Barnett, Phys. Rev. Lett. 81, 1604 (1998).
[CrossRef]

H. Ezaki, E. Hanamura, and Y. Yamamoto, Phys. Rev. Lett. 83, 3558 (1999).
[CrossRef]

Rep. Prog. Phys. (2)

B. Lounis and M. Orrit, Rep. Prog. Phys. 68, 1129 (2005).
[CrossRef]

A. Cerqueira, Rep. Prog. Phys. 73, 024401 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(a) Dynamics of matrix elements ρ 11 (solid curve), ρ 22 (dashed curve), and average number of photons in the collective mode b 2 (dotted curve) in dependence on the interaction length, , for the initial coherent state with N = 47 photons; single-photon loss is absent ( Γ = 0 ). (b) Dynamics of the mode b 2 population for different initial coherent states ( Γ = 0 ). (c) Dynamics of matrix elements ρ 11 (solid curves), ρ 22 (dashed curves), and average number of photons in the collective mode b 2 (dotted curve) in dependence on the interaction length, , for the initial coherent state with N = 47 photons (thick curves correspond to the single-photon loss with the rate Γ = 0.1 γ 3 , and thin curves correspond to Γ = γ 3 ). (d) The same as for (c) but with the large single-photon loss rate Γ = 5.4 γ 3 ; the dashed-dotted curve shows two-photon population, ρ 22 coh , for the coherent state with the average number of photons equal to those of the generated state. For all figures, γ 2 = 0.0102 γ 3 and γ 3 = 4 dB / km ; g 2 = 0.1 g 1 , g 1 = 1 m 1 , U = 0.1 m 1 , and Γ 3 = 43.44 dB / m .

Fig. 2
Fig. 2

Photon-number distributions for different interaction lengths and single-photon decay rates. The solid curve corresponds to the initial coherent state with N = 49 photons, the dashed-dotted curve corresponds to the state generated after the interaction length with = 0.1 m and γ 1 = 100 γ 3 , the dashed curve corresponds to the coherent state with the same average number of photons, and the dotted curve corresponds to the generated state with = 0.1 m and γ 1 = 300 γ 3 . Inset, dynamics of the Mandel parameter, Q. Other parameters are as for Fig. 1.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

d ρ all d = i [ H , ρ all ] + j = 1 3 Γ j L ( a j ) ρ all ,
L ( a j ) ρ a j ρ a j 1 2 a j a j ρ 1 2 ρ a j a j .
H = [ ( g 1 a 1 + g 2 a 2 ) a 3 + h.c. ] + U 2 [ ( a 1 ) 2 a 1 2 + ( a 2 ) 2 a 2 2 ] ,
d ρ ˜ d = i [ H ˜ , ρ ˜ ] + ( γ 1 + Γ ) L ( b 1 ) ρ ˜ + Γ L ( b 2 ) ρ ˜ ,
H 0 = U 2 G 4 { ( g 1 4 + g 2 4 ) ( n 1 2 + n 2 2 ) + 8 ( g 1 g 2 ) 2 n 1 n 2 + 2 ( g 1 g 2 ) 2 ( n 1 + n 2 ) } U 2 ( n 1 + n 2 ) ,
H I = K 2 ( b 1 b 2 ) 2 + K 3 b 1 b 2 ( n 2 n 1 1 ) + h.c. ,
d ρ d = i [ H 2 , ρ ] + Γ L ( b 2 ) ρ + γ 2 L ( b 2 2 ) ρ + γ 3 L ( n 2 b 2 ) ρ ,
γ 2 = 4 U 2 ( g 1 g 2 ) 4 G 8 ( γ 1 + Γ ) , γ 3 = 4 U 2 ( g 1 g 2 ) 2 G 8 ( γ 1 + Γ ) ( g 1 2 g 2 2 ) 2 ,
H 2 = U 2 G 4 ( g 1 4 + g 2 4 ) n 2 2 + ( U ( g 1 g 2 ) 2 G 4 U 2 ) n 2 .
d ρ n n d = σ n ρ n + 2 , n + 2 + β n ρ n + 1 , n + 1 Γ n ρ n n ,
R 0 ρ 00 ( ) ρ 11 ( ) < e Γ ( | α | 2 + ϰ Γ ) ,
R 2 max [ ρ n n ( ) ρ 11 ( ) ] e ( γ 3 + Γ ) ( α ( 1 ) ) + e Γ ( α ( 2 ) ) ,

Metrics