Abstract

We present an analytical method for extracting the recombination zone location from emission patterns produced by organic LEDs (OLEDs). The method is based on derivation of the closed-form expressions for OLED-radiated power developed in previous work and formulation of the analytical relations between the emitter position and the pattern extrema. The results are confirmed to be in good agreement with reported optical measurements. The resultant formulae offer insight regarding the dominant physical processes in the device and can be utilized to assess or verify the location of the recombination zone, a very important parameter in the optimization process of OLED efficiency, from standard optical measurements, otherwise a very difficult task to achieve.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. D. Santos, J. L. Bredas, M. Logdlund, and W. R. Salaneck, Nature 397, 121 (1999).
    [CrossRef]
  2. N. Tessler, G. J. Denton, and R. H. Friend, Nature 382, 695(1996).
    [CrossRef]
  3. S. Mladenovski, K. Neyts, D. Pavicic, A. Werner, and C. Rothe, Opt. Express 17, 7562 (2009).
    [CrossRef] [PubMed]
  4. M. Slootsky and S. R. Forrest, Opt. Lett. 35, 1052 (2010).
    [CrossRef] [PubMed]
  5. C.-L. Lin, T.-Y. Cho, C.-H. Chang, and C.-C. Wu, Appl. Phys. Lett. 88, 081114 (2006).
    [CrossRef]
  6. J. Lee, N. Chopra, and F. So, Appl. Phys. Lett. 92, 033303(2008).
    [CrossRef]
  7. N. Tessler, Appl. Phys. Lett. 77, 1897 (2000).
    [CrossRef]
  8. T. Granlund, L. A. A. Pettersson, and O. Inganas, J. Appl. Phys. 89, 5897 (2001).
    [CrossRef]
  9. B. Ruhstaller, T. Beierlein, H. Riel, S. Karg, J. Scott, and W. Riess, IEEE J. Sel. Top. Quantum Electron. 9, 723 (2003).
    [CrossRef]
  10. A. Epstein, N. Tessler, and P. D. Einziger, IEEE J. Quantum Electron. 46, 1388 (2010).
    [CrossRef]

2010 (2)

A. Epstein, N. Tessler, and P. D. Einziger, IEEE J. Quantum Electron. 46, 1388 (2010).
[CrossRef]

M. Slootsky and S. R. Forrest, Opt. Lett. 35, 1052 (2010).
[CrossRef] [PubMed]

2009 (1)

2008 (1)

J. Lee, N. Chopra, and F. So, Appl. Phys. Lett. 92, 033303(2008).
[CrossRef]

2006 (1)

C.-L. Lin, T.-Y. Cho, C.-H. Chang, and C.-C. Wu, Appl. Phys. Lett. 88, 081114 (2006).
[CrossRef]

2003 (1)

B. Ruhstaller, T. Beierlein, H. Riel, S. Karg, J. Scott, and W. Riess, IEEE J. Sel. Top. Quantum Electron. 9, 723 (2003).
[CrossRef]

2001 (1)

T. Granlund, L. A. A. Pettersson, and O. Inganas, J. Appl. Phys. 89, 5897 (2001).
[CrossRef]

2000 (1)

N. Tessler, Appl. Phys. Lett. 77, 1897 (2000).
[CrossRef]

1999 (1)

R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. D. Santos, J. L. Bredas, M. Logdlund, and W. R. Salaneck, Nature 397, 121 (1999).
[CrossRef]

1996 (1)

N. Tessler, G. J. Denton, and R. H. Friend, Nature 382, 695(1996).
[CrossRef]

Beierlein, T.

B. Ruhstaller, T. Beierlein, H. Riel, S. Karg, J. Scott, and W. Riess, IEEE J. Sel. Top. Quantum Electron. 9, 723 (2003).
[CrossRef]

Bradley, D. D. C.

R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. D. Santos, J. L. Bredas, M. Logdlund, and W. R. Salaneck, Nature 397, 121 (1999).
[CrossRef]

Bredas, J. L.

R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. D. Santos, J. L. Bredas, M. Logdlund, and W. R. Salaneck, Nature 397, 121 (1999).
[CrossRef]

Burroughes, J. H.

R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. D. Santos, J. L. Bredas, M. Logdlund, and W. R. Salaneck, Nature 397, 121 (1999).
[CrossRef]

Chang, C.-H.

C.-L. Lin, T.-Y. Cho, C.-H. Chang, and C.-C. Wu, Appl. Phys. Lett. 88, 081114 (2006).
[CrossRef]

Cho, T.-Y.

C.-L. Lin, T.-Y. Cho, C.-H. Chang, and C.-C. Wu, Appl. Phys. Lett. 88, 081114 (2006).
[CrossRef]

Chopra, N.

J. Lee, N. Chopra, and F. So, Appl. Phys. Lett. 92, 033303(2008).
[CrossRef]

Denton, G. J.

N. Tessler, G. J. Denton, and R. H. Friend, Nature 382, 695(1996).
[CrossRef]

Einziger, P. D.

A. Epstein, N. Tessler, and P. D. Einziger, IEEE J. Quantum Electron. 46, 1388 (2010).
[CrossRef]

Epstein, A.

A. Epstein, N. Tessler, and P. D. Einziger, IEEE J. Quantum Electron. 46, 1388 (2010).
[CrossRef]

Forrest, S. R.

Friend, R. H.

R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. D. Santos, J. L. Bredas, M. Logdlund, and W. R. Salaneck, Nature 397, 121 (1999).
[CrossRef]

N. Tessler, G. J. Denton, and R. H. Friend, Nature 382, 695(1996).
[CrossRef]

Granlund, T.

T. Granlund, L. A. A. Pettersson, and O. Inganas, J. Appl. Phys. 89, 5897 (2001).
[CrossRef]

Gymer, R. W.

R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. D. Santos, J. L. Bredas, M. Logdlund, and W. R. Salaneck, Nature 397, 121 (1999).
[CrossRef]

Holmes, A. B.

R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. D. Santos, J. L. Bredas, M. Logdlund, and W. R. Salaneck, Nature 397, 121 (1999).
[CrossRef]

Inganas, O.

T. Granlund, L. A. A. Pettersson, and O. Inganas, J. Appl. Phys. 89, 5897 (2001).
[CrossRef]

Karg, S.

B. Ruhstaller, T. Beierlein, H. Riel, S. Karg, J. Scott, and W. Riess, IEEE J. Sel. Top. Quantum Electron. 9, 723 (2003).
[CrossRef]

Lee, J.

J. Lee, N. Chopra, and F. So, Appl. Phys. Lett. 92, 033303(2008).
[CrossRef]

Lin, C.-L.

C.-L. Lin, T.-Y. Cho, C.-H. Chang, and C.-C. Wu, Appl. Phys. Lett. 88, 081114 (2006).
[CrossRef]

Logdlund, M.

R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. D. Santos, J. L. Bredas, M. Logdlund, and W. R. Salaneck, Nature 397, 121 (1999).
[CrossRef]

Marks, R. N.

R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. D. Santos, J. L. Bredas, M. Logdlund, and W. R. Salaneck, Nature 397, 121 (1999).
[CrossRef]

Mladenovski, S.

Neyts, K.

Pavicic, D.

Pettersson, L. A. A.

T. Granlund, L. A. A. Pettersson, and O. Inganas, J. Appl. Phys. 89, 5897 (2001).
[CrossRef]

Riel, H.

B. Ruhstaller, T. Beierlein, H. Riel, S. Karg, J. Scott, and W. Riess, IEEE J. Sel. Top. Quantum Electron. 9, 723 (2003).
[CrossRef]

Riess, W.

B. Ruhstaller, T. Beierlein, H. Riel, S. Karg, J. Scott, and W. Riess, IEEE J. Sel. Top. Quantum Electron. 9, 723 (2003).
[CrossRef]

Rothe, C.

Ruhstaller, B.

B. Ruhstaller, T. Beierlein, H. Riel, S. Karg, J. Scott, and W. Riess, IEEE J. Sel. Top. Quantum Electron. 9, 723 (2003).
[CrossRef]

Salaneck, W. R.

R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. D. Santos, J. L. Bredas, M. Logdlund, and W. R. Salaneck, Nature 397, 121 (1999).
[CrossRef]

Santos, D. A. D.

R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. D. Santos, J. L. Bredas, M. Logdlund, and W. R. Salaneck, Nature 397, 121 (1999).
[CrossRef]

Scott, J.

B. Ruhstaller, T. Beierlein, H. Riel, S. Karg, J. Scott, and W. Riess, IEEE J. Sel. Top. Quantum Electron. 9, 723 (2003).
[CrossRef]

Slootsky, M.

So, F.

J. Lee, N. Chopra, and F. So, Appl. Phys. Lett. 92, 033303(2008).
[CrossRef]

Taliani, C.

R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. D. Santos, J. L. Bredas, M. Logdlund, and W. R. Salaneck, Nature 397, 121 (1999).
[CrossRef]

Tessler, N.

A. Epstein, N. Tessler, and P. D. Einziger, IEEE J. Quantum Electron. 46, 1388 (2010).
[CrossRef]

N. Tessler, Appl. Phys. Lett. 77, 1897 (2000).
[CrossRef]

N. Tessler, G. J. Denton, and R. H. Friend, Nature 382, 695(1996).
[CrossRef]

Werner, A.

Wu, C.-C.

C.-L. Lin, T.-Y. Cho, C.-H. Chang, and C.-C. Wu, Appl. Phys. Lett. 88, 081114 (2006).
[CrossRef]

Appl. Phys. Lett. (3)

C.-L. Lin, T.-Y. Cho, C.-H. Chang, and C.-C. Wu, Appl. Phys. Lett. 88, 081114 (2006).
[CrossRef]

J. Lee, N. Chopra, and F. So, Appl. Phys. Lett. 92, 033303(2008).
[CrossRef]

N. Tessler, Appl. Phys. Lett. 77, 1897 (2000).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. Epstein, N. Tessler, and P. D. Einziger, IEEE J. Quantum Electron. 46, 1388 (2010).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

B. Ruhstaller, T. Beierlein, H. Riel, S. Karg, J. Scott, and W. Riess, IEEE J. Sel. Top. Quantum Electron. 9, 723 (2003).
[CrossRef]

J. Appl. Phys. (1)

T. Granlund, L. A. A. Pettersson, and O. Inganas, J. Appl. Phys. 89, 5897 (2001).
[CrossRef]

Nature (2)

R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. D. Santos, J. L. Bredas, M. Logdlund, and W. R. Salaneck, Nature 397, 121 (1999).
[CrossRef]

N. Tessler, G. J. Denton, and R. H. Friend, Nature 382, 695(1996).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Physical configuration of a general 2D BE OLED.

Fig. 2
Fig. 2

Comparison of the exact recombination zone location (blue line) with the values extracted from the emission pattern local minima (green circles and squares) and local maxima (red × and + symbols) produced by electric (circles and × symbols) and magnetic (squares and + symbols) line sources located in position z .

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

S ρ ( θ ) P 4 π ρ T IS ( k t , z ) T DR ( k t ) T WM ( k t ) | k t = k 4 sin θ ,
T IS ( k t , z ) = 1 + | Γ ^ 1 ( k t ) | 2 2 { Γ ^ 1 ( k t ) e 2 j { β 1 } ( z d 1 ) } ,
T DR ( k t ) = n = 3 4 | 1 + Γ n 1 ( k t ) | 2 ,
T WM ( k t ) = q = 0 q max { | Γ ^ 1 ( k t ) | 2 | Γ 3 ( k t ) | 2 } q ,
2 ϕ src χ act + α img α 0 = { 2 π ν + π local min 2 π ν + π 2 ψ DR local max ,
χ DR m e = { r act 2 χ air 2 χ act ( 1 r sub χ air ) r act 2 χ air 2 ( r sub + χ air ) r sub χ act ( 1 r sub χ air 2 ) .
ϕ src min = 2 π ν + π ( α img α 0 ) 2 χ act | θ = θ min ,
ϕ src max , < = 2 π ν + π ( α img α 0 ) 2 ϕ 0 χ DR 2 ( χ act + χ DR ) | θ = θ max ,
ϕ src max , > = 2 π ν ( α img α 0 ) 2 ϕ 0 χ act 4 χ act | θ = θ max · { 1 ± 1 + 8 χ act [ 2 ϕ 0 χ DR ( α img α 0 2 π ν ) ] χ DR ( 2 π ν ( α img α 0 ) 2 ϕ 0 χ act ) 2 } .

Metrics