Abstract

We theoretically propose a broadband optical isolator based on second-harmonic generation in a one-dimensional quadratic nonlinear photonic crystal (NPC) with an embedded defect. An external electric field along the z axis is applied to modulate the NPC refractive index periodically. Complete optical isolation always could be reached with the help of an external field. Influences of the defect position and thickness are discussed. The spectral and power tolerances of the isolator also have been investigated and show high contrast within a wide wavelength range at different power levels.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Berger, Phys. Rev. Lett. 81, 4136 (1998).
    [CrossRef]
  2. S. Saltiel and Y. S. Kivshar, Opt. Lett. 25, 1204 (2000).
    [CrossRef]
  3. M. F. Yanik, S. Fan, and M. Soljačić, Appl. Phys. Lett. 83, 2739 (2003).
    [CrossRef]
  4. M. F. Yanik, S. H. Fan, M. Soljačić, and J. D. Joannopoulos, Opt. Lett. 28, 2506 (2003).
    [CrossRef] [PubMed]
  5. H. Nakamura, Y. Sugimoto, K. Kanamoto, N. Ikeda, Y. Tanaka, Y. Nakamura, S. Ohkouchi, Y. Watanabe, K. Inoue, H. Ishikawa, and K. Asakawa, Opt. Express 12, 6606 (2004).
    [CrossRef] [PubMed]
  6. Z. F. Yu and S. H. Fan, Nat. Photon. 3, 91 (2009).
    [CrossRef]
  7. K. Gallo and G. Assanto, J. Opt. Soc. Am. B 16, 267 (1999).
    [CrossRef]
  8. K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, Appl. Phys. Lett. 79, 314 (2001).
    [CrossRef]
  9. F. Xu, J. Liao, X. J. Zhang, J. L. He, H. T. Wang, and N. B. Ming, Phys. Rev. A 68, 033808 (2003).
    [CrossRef]
  10. F. Xu, J. L. He, J. Liao, Q. Wang, Q. Xu, N. H. Shen, H. T. Wang, and N. B. Ming, Phys. Rev. A 68, 053803 (2003).
    [CrossRef]

2009 (1)

Z. F. Yu and S. H. Fan, Nat. Photon. 3, 91 (2009).
[CrossRef]

2004 (1)

2003 (4)

M. F. Yanik, S. Fan, and M. Soljačić, Appl. Phys. Lett. 83, 2739 (2003).
[CrossRef]

M. F. Yanik, S. H. Fan, M. Soljačić, and J. D. Joannopoulos, Opt. Lett. 28, 2506 (2003).
[CrossRef] [PubMed]

F. Xu, J. Liao, X. J. Zhang, J. L. He, H. T. Wang, and N. B. Ming, Phys. Rev. A 68, 033808 (2003).
[CrossRef]

F. Xu, J. L. He, J. Liao, Q. Wang, Q. Xu, N. H. Shen, H. T. Wang, and N. B. Ming, Phys. Rev. A 68, 053803 (2003).
[CrossRef]

2001 (1)

K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, Appl. Phys. Lett. 79, 314 (2001).
[CrossRef]

2000 (1)

1999 (1)

1998 (1)

V. Berger, Phys. Rev. Lett. 81, 4136 (1998).
[CrossRef]

Asakawa, K.

Assanto, G.

K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, Appl. Phys. Lett. 79, 314 (2001).
[CrossRef]

K. Gallo and G. Assanto, J. Opt. Soc. Am. B 16, 267 (1999).
[CrossRef]

Berger, V.

V. Berger, Phys. Rev. Lett. 81, 4136 (1998).
[CrossRef]

Fan, S.

M. F. Yanik, S. Fan, and M. Soljačić, Appl. Phys. Lett. 83, 2739 (2003).
[CrossRef]

Fan, S. H.

Fejer, M. M.

K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, Appl. Phys. Lett. 79, 314 (2001).
[CrossRef]

Gallo, K.

K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, Appl. Phys. Lett. 79, 314 (2001).
[CrossRef]

K. Gallo and G. Assanto, J. Opt. Soc. Am. B 16, 267 (1999).
[CrossRef]

He, J. L.

F. Xu, J. Liao, X. J. Zhang, J. L. He, H. T. Wang, and N. B. Ming, Phys. Rev. A 68, 033808 (2003).
[CrossRef]

F. Xu, J. L. He, J. Liao, Q. Wang, Q. Xu, N. H. Shen, H. T. Wang, and N. B. Ming, Phys. Rev. A 68, 053803 (2003).
[CrossRef]

Ikeda, N.

Inoue, K.

Ishikawa, H.

Joannopoulos, J. D.

Kanamoto, K.

Kivshar, Y. S.

Liao, J.

F. Xu, J. Liao, X. J. Zhang, J. L. He, H. T. Wang, and N. B. Ming, Phys. Rev. A 68, 033808 (2003).
[CrossRef]

F. Xu, J. L. He, J. Liao, Q. Wang, Q. Xu, N. H. Shen, H. T. Wang, and N. B. Ming, Phys. Rev. A 68, 053803 (2003).
[CrossRef]

Ming, N. B.

F. Xu, J. L. He, J. Liao, Q. Wang, Q. Xu, N. H. Shen, H. T. Wang, and N. B. Ming, Phys. Rev. A 68, 053803 (2003).
[CrossRef]

F. Xu, J. Liao, X. J. Zhang, J. L. He, H. T. Wang, and N. B. Ming, Phys. Rev. A 68, 033808 (2003).
[CrossRef]

Nakamura, H.

Nakamura, Y.

Ohkouchi, S.

Parameswaran, K. R.

K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, Appl. Phys. Lett. 79, 314 (2001).
[CrossRef]

Saltiel, S.

Shen, N. H.

F. Xu, J. L. He, J. Liao, Q. Wang, Q. Xu, N. H. Shen, H. T. Wang, and N. B. Ming, Phys. Rev. A 68, 053803 (2003).
[CrossRef]

Soljacic, M.

Sugimoto, Y.

Tanaka, Y.

Wang, H. T.

F. Xu, J. Liao, X. J. Zhang, J. L. He, H. T. Wang, and N. B. Ming, Phys. Rev. A 68, 033808 (2003).
[CrossRef]

F. Xu, J. L. He, J. Liao, Q. Wang, Q. Xu, N. H. Shen, H. T. Wang, and N. B. Ming, Phys. Rev. A 68, 053803 (2003).
[CrossRef]

Wang, Q.

F. Xu, J. L. He, J. Liao, Q. Wang, Q. Xu, N. H. Shen, H. T. Wang, and N. B. Ming, Phys. Rev. A 68, 053803 (2003).
[CrossRef]

Watanabe, Y.

Xu, F.

F. Xu, J. L. He, J. Liao, Q. Wang, Q. Xu, N. H. Shen, H. T. Wang, and N. B. Ming, Phys. Rev. A 68, 053803 (2003).
[CrossRef]

F. Xu, J. Liao, X. J. Zhang, J. L. He, H. T. Wang, and N. B. Ming, Phys. Rev. A 68, 033808 (2003).
[CrossRef]

Xu, Q.

F. Xu, J. L. He, J. Liao, Q. Wang, Q. Xu, N. H. Shen, H. T. Wang, and N. B. Ming, Phys. Rev. A 68, 053803 (2003).
[CrossRef]

Yanik, M. F.

Yu, Z. F.

Z. F. Yu and S. H. Fan, Nat. Photon. 3, 91 (2009).
[CrossRef]

Zhang, X. J.

F. Xu, J. Liao, X. J. Zhang, J. L. He, H. T. Wang, and N. B. Ming, Phys. Rev. A 68, 033808 (2003).
[CrossRef]

Appl. Phys. Lett. (2)

M. F. Yanik, S. Fan, and M. Soljačić, Appl. Phys. Lett. 83, 2739 (2003).
[CrossRef]

K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, Appl. Phys. Lett. 79, 314 (2001).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Photon. (1)

Z. F. Yu and S. H. Fan, Nat. Photon. 3, 91 (2009).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. A (2)

F. Xu, J. Liao, X. J. Zhang, J. L. He, H. T. Wang, and N. B. Ming, Phys. Rev. A 68, 033808 (2003).
[CrossRef]

F. Xu, J. L. He, J. Liao, Q. Wang, Q. Xu, N. H. Shen, H. T. Wang, and N. B. Ming, Phys. Rev. A 68, 053803 (2003).
[CrossRef]

Phys. Rev. Lett. (1)

V. Berger, Phys. Rev. Lett. 81, 4136 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Refractive indices and the second-order nonlinear coefficients in a PPLN: (a) in the absence of an applied electric field and (b) with an electric field applied along the z axis. (c) Schematic diagram of a PPLN isolator with an electric field applied along the z axis. A defect of thickness δ L is embedded at the position x = L 1 , while L 1 < L / 2 .

Fig. 2
Fig. 2

Isolation contrast C of the FW versus δ L / l when the defect is placed at positions L 1 = 0.2 , 0.25, 0.3, and 0.4 L for L = 3.8 cm and I = 10 MW / cm 2 . The blue solid and green dashed curves refer to the condition with and without the LRIG, respectively.

Fig. 3
Fig. 3

Isolation contrast C of the FW versus the (a) input FW intensity for L 1 = 0.25 L and δ L / l = 0.5 and (b) input FW intensity and defect length by electro-optically tuning the LRIG. The blue solid and green dashed curves refer to the condition with and without the LRIG, respectively.

Fig. 4
Fig. 4

Isolation contrast C: (a) at a wide range near the central wavelength and (b) versus the defect thickness when the QPM condition is not satisfied ( Δ k L = 2 π or 3 π ). I = 10 MW / cm 2 , δ L / l = 0.5 , and L 1 = 0.25 L . The blue solid and green dashed curves refer to the condition with and without the LRIG, respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

{ d E 1 z / d x = i d 33 ( x ) w 1 / [ n 1 z ( x ) c ] E 1 z * E 2 z e i Δ k ( x ) x d E 2 z / d x = i d 33 ( x ) w 2 / [ 2 n 2 z ( x ) c ] E 1 z 2 e i Δ k ( x ) x , n j z ( x ) = n j z f ( x ) n j z 3 γ 33 E z / 2 , Δ k ( x ) = k 2 z ( x ) 2 k 1 z ( x ) , k j z ( x ) = w j n j z ( x ) / c ,

Metrics