Abstract

We report a design for upconversion 435nm blue lasers based on simultaneously fulfilling the nonlinear processes of optical parametric oscillation (OPO) and second-harmonic generation (SHG) in a 7.9μm periodically poled lithium tantalate (PPLT). The uncoated 15-mm-long PPLT device exhibits a low threshold of 150mW and a differential slope efficiency of 22.6%, rendering 56mW blue generation when pumped by a pulsed 532nm green laser with an average power rating of 400mW. These observations were attributed to a quasi-phase-matching (QPM) structural design with a 75% domain duty cycle to ensure the concurrence of frequency doubling with the first-order QPM-OPO PPLT device via the second-order QPM-SHG process.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Camlibel, J. Appl. Phys. 40, 1690 (1969).
    [CrossRef]
  2. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
    [CrossRef]
  3. For a recent review, see P.Ferraro, S.Grilli, and P.De Natale, eds. Micro/Nano Engineering and Characterization of Ferroelectric Crystals for Applications in Photonics (Springer, 2008).
    [PubMed]
  4. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, J. Opt. Soc. Am. B 12, 2102 (1995).
    [CrossRef]
  5. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, Appl. Phys. Lett. 62, 435 (1993).
    [CrossRef]
  6. A. Bahabad, N. Voloch, A. Arie, and R. Lifshitz, J. Opt. Soc. Am. B 24, 1916 (2007).
    [CrossRef]
  7. A. H. Norton and C. M. De Sterke, Opt. Express 11, 1008 (2003).
    [CrossRef] [PubMed]
  8. S.-N. Zhu, Y.-Y. Zhu, and N.-B. Ming, Science 278, 843 (1997).
    [CrossRef]
  9. L.-H. Peng, C.-C. Hsu, and A. H. Kung, IEEE J. Sel. Top. Quantum Electron. 10, 1142 (2004).
    [CrossRef]
  10. W. Q. Zhang, F. Yang, and X. Y. Li, Opt. Commun. 282, 1406 (2009).
    [CrossRef]
  11. T. Kartaloğlu, Z. Gürkan Figen, and O. Aytür, J. Opt. Soc. Am. B 20, 343 (2003).
    [CrossRef]
  12. X. Xie and M. M. Fejer, J. Opt. Soc. Am. B 24, 585 (2007).
    [CrossRef]
  13. G. K. Samanta and M. Ebrahim-Zadeh, Opt. Lett. 33, 1228 (2008).
    [CrossRef] [PubMed]
  14. P. Xu, K. Li, G. Zhao, Y. Du, S.-H. Ji, Y.-Y. Zhu, N.-B. Ming, L. Luo, K. F. Li, and K. W. Cheah, Opt. Lett. 29, 95 (2004).
    [CrossRef] [PubMed]
  15. H. H. Abu-Safe, Appl. Opt. 44, 7458 (2005).
    [CrossRef] [PubMed]
  16. J.-P. Meyn and M. M. Fejer, Opt. Lett. 22, 1214 (1997).
    [CrossRef] [PubMed]
  17. L.-H. Peng, Y.-C. Shih, S.-M. Tsan, and C. C. Hsu, Appl. Phys. Lett. 81, 5210 (2002).
    [CrossRef]
  18. L.-H. Peng, Y.-P. Tseng, K.-L. Lin, Z.-X. Huang, C.-T. Huang, and A. H. Kung, Appl. Phys. Lett. 92, 092903 (2008).
    [CrossRef]
  19. R. S. Quimby, Photonics and Lasers (Wiley, 2006).
    [CrossRef]
  20. A. E. Siegman, Appl. Opt. 1, 739 (1962).
    [CrossRef]
  21. J. E. Bjorkholm, IEEE J. Quantum Electron. 7, 109 (1971).
    [CrossRef]
  22. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984), Chap. 9.
  23. E. Granot, S. Pearl, and M. M. Tilleman, J. Opt. Soc. Am. B 17, 381 (2000).
    [CrossRef]
  24. T. G. Giallorenzi and M. H. Reilly, IEEE J. Quantum Electron. 8, 302 (1972).
    [CrossRef]

2009 (1)

W. Q. Zhang, F. Yang, and X. Y. Li, Opt. Commun. 282, 1406 (2009).
[CrossRef]

2008 (2)

G. K. Samanta and M. Ebrahim-Zadeh, Opt. Lett. 33, 1228 (2008).
[CrossRef] [PubMed]

L.-H. Peng, Y.-P. Tseng, K.-L. Lin, Z.-X. Huang, C.-T. Huang, and A. H. Kung, Appl. Phys. Lett. 92, 092903 (2008).
[CrossRef]

2007 (2)

2005 (1)

2004 (2)

2003 (2)

2002 (1)

L.-H. Peng, Y.-C. Shih, S.-M. Tsan, and C. C. Hsu, Appl. Phys. Lett. 81, 5210 (2002).
[CrossRef]

2000 (1)

1997 (2)

S.-N. Zhu, Y.-Y. Zhu, and N.-B. Ming, Science 278, 843 (1997).
[CrossRef]

J.-P. Meyn and M. M. Fejer, Opt. Lett. 22, 1214 (1997).
[CrossRef] [PubMed]

1995 (1)

1993 (1)

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, Appl. Phys. Lett. 62, 435 (1993).
[CrossRef]

1972 (1)

T. G. Giallorenzi and M. H. Reilly, IEEE J. Quantum Electron. 8, 302 (1972).
[CrossRef]

1971 (1)

J. E. Bjorkholm, IEEE J. Quantum Electron. 7, 109 (1971).
[CrossRef]

1969 (1)

I. Camlibel, J. Appl. Phys. 40, 1690 (1969).
[CrossRef]

1962 (2)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

A. E. Siegman, Appl. Opt. 1, 739 (1962).
[CrossRef]

Abu-Safe, H. H.

Arie, A.

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Aytür, O.

Bahabad, A.

Bjorkholm, J. E.

J. E. Bjorkholm, IEEE J. Quantum Electron. 7, 109 (1971).
[CrossRef]

Bloembergen, N.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Bosenberg, W. R.

Byer, R. L.

Camlibel, I.

I. Camlibel, J. Appl. Phys. 40, 1690 (1969).
[CrossRef]

Cheah, K. W.

De Sterke, C. M.

Du, Y.

Ducuing, J.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Ebrahim-Zadeh, M.

Eckardt, R. C.

Fejer, M. M.

Giallorenzi, T. G.

T. G. Giallorenzi and M. H. Reilly, IEEE J. Quantum Electron. 8, 302 (1972).
[CrossRef]

Granot, E.

Gürkan Figen, Z.

Hsu, C. C.

L.-H. Peng, Y.-C. Shih, S.-M. Tsan, and C. C. Hsu, Appl. Phys. Lett. 81, 5210 (2002).
[CrossRef]

Hsu, C.-C.

L.-H. Peng, C.-C. Hsu, and A. H. Kung, IEEE J. Sel. Top. Quantum Electron. 10, 1142 (2004).
[CrossRef]

Huang, C.-T.

L.-H. Peng, Y.-P. Tseng, K.-L. Lin, Z.-X. Huang, C.-T. Huang, and A. H. Kung, Appl. Phys. Lett. 92, 092903 (2008).
[CrossRef]

Huang, Z.-X.

L.-H. Peng, Y.-P. Tseng, K.-L. Lin, Z.-X. Huang, C.-T. Huang, and A. H. Kung, Appl. Phys. Lett. 92, 092903 (2008).
[CrossRef]

Ji, S.-H.

Kartaloglu, T.

Kung, A. H.

L.-H. Peng, Y.-P. Tseng, K.-L. Lin, Z.-X. Huang, C.-T. Huang, and A. H. Kung, Appl. Phys. Lett. 92, 092903 (2008).
[CrossRef]

L.-H. Peng, C.-C. Hsu, and A. H. Kung, IEEE J. Sel. Top. Quantum Electron. 10, 1142 (2004).
[CrossRef]

Li, K.

Li, K. F.

Li, X. Y.

W. Q. Zhang, F. Yang, and X. Y. Li, Opt. Commun. 282, 1406 (2009).
[CrossRef]

Lifshitz, R.

Lin, K.-L.

L.-H. Peng, Y.-P. Tseng, K.-L. Lin, Z.-X. Huang, C.-T. Huang, and A. H. Kung, Appl. Phys. Lett. 92, 092903 (2008).
[CrossRef]

Luo, L.

Meyn, J.-P.

Ming, N.-B.

Myers, L. E.

Nada, N.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, Appl. Phys. Lett. 62, 435 (1993).
[CrossRef]

Norton, A. H.

Pearl, S.

Peng, L.-H.

L.-H. Peng, Y.-P. Tseng, K.-L. Lin, Z.-X. Huang, C.-T. Huang, and A. H. Kung, Appl. Phys. Lett. 92, 092903 (2008).
[CrossRef]

L.-H. Peng, C.-C. Hsu, and A. H. Kung, IEEE J. Sel. Top. Quantum Electron. 10, 1142 (2004).
[CrossRef]

L.-H. Peng, Y.-C. Shih, S.-M. Tsan, and C. C. Hsu, Appl. Phys. Lett. 81, 5210 (2002).
[CrossRef]

Pershan, P. S.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Pierce, J. W.

Quimby, R. S.

R. S. Quimby, Photonics and Lasers (Wiley, 2006).
[CrossRef]

Reilly, M. H.

T. G. Giallorenzi and M. H. Reilly, IEEE J. Quantum Electron. 8, 302 (1972).
[CrossRef]

Saitoh, M.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, Appl. Phys. Lett. 62, 435 (1993).
[CrossRef]

Samanta, G. K.

Shen, Y. R.

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984), Chap. 9.

Shih, Y.-C.

L.-H. Peng, Y.-C. Shih, S.-M. Tsan, and C. C. Hsu, Appl. Phys. Lett. 81, 5210 (2002).
[CrossRef]

Siegman, A. E.

Tilleman, M. M.

Tsan, S.-M.

L.-H. Peng, Y.-C. Shih, S.-M. Tsan, and C. C. Hsu, Appl. Phys. Lett. 81, 5210 (2002).
[CrossRef]

Tseng, Y.-P.

L.-H. Peng, Y.-P. Tseng, K.-L. Lin, Z.-X. Huang, C.-T. Huang, and A. H. Kung, Appl. Phys. Lett. 92, 092903 (2008).
[CrossRef]

Voloch, N.

Watanabe, K.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, Appl. Phys. Lett. 62, 435 (1993).
[CrossRef]

Xie, X.

Xu, P.

Yamada, M.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, Appl. Phys. Lett. 62, 435 (1993).
[CrossRef]

Yang, F.

W. Q. Zhang, F. Yang, and X. Y. Li, Opt. Commun. 282, 1406 (2009).
[CrossRef]

Zhang, W. Q.

W. Q. Zhang, F. Yang, and X. Y. Li, Opt. Commun. 282, 1406 (2009).
[CrossRef]

Zhao, G.

Zhu, S.-N.

S.-N. Zhu, Y.-Y. Zhu, and N.-B. Ming, Science 278, 843 (1997).
[CrossRef]

Zhu, Y.-Y.

Appl. Opt. (2)

Appl. Phys. Lett. (3)

L.-H. Peng, Y.-C. Shih, S.-M. Tsan, and C. C. Hsu, Appl. Phys. Lett. 81, 5210 (2002).
[CrossRef]

L.-H. Peng, Y.-P. Tseng, K.-L. Lin, Z.-X. Huang, C.-T. Huang, and A. H. Kung, Appl. Phys. Lett. 92, 092903 (2008).
[CrossRef]

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, Appl. Phys. Lett. 62, 435 (1993).
[CrossRef]

IEEE J. Quantum Electron. (2)

J. E. Bjorkholm, IEEE J. Quantum Electron. 7, 109 (1971).
[CrossRef]

T. G. Giallorenzi and M. H. Reilly, IEEE J. Quantum Electron. 8, 302 (1972).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

L.-H. Peng, C.-C. Hsu, and A. H. Kung, IEEE J. Sel. Top. Quantum Electron. 10, 1142 (2004).
[CrossRef]

J. Appl. Phys. (1)

I. Camlibel, J. Appl. Phys. 40, 1690 (1969).
[CrossRef]

J. Opt. Soc. Am. B (5)

Opt. Commun. (1)

W. Q. Zhang, F. Yang, and X. Y. Li, Opt. Commun. 282, 1406 (2009).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Science (1)

S.-N. Zhu, Y.-Y. Zhu, and N.-B. Ming, Science 278, 843 (1997).
[CrossRef]

Other (3)

For a recent review, see P.Ferraro, S.Grilli, and P.De Natale, eds. Micro/Nano Engineering and Characterization of Ferroelectric Crystals for Applications in Photonics (Springer, 2008).
[PubMed]

R. S. Quimby, Photonics and Lasers (Wiley, 2006).
[CrossRef]

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984), Chap. 9.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Calculated spectral and temperature tuning curves for the QPM-OPO and -SHG processes in a PPLT device of a 7.9 μ m period.

Fig. 2
Fig. 2

Scanning electron micrographs of the etched + Z , Y, and Z face of 1D PPLT sample A of 7.9 μ m period.

Fig. 3
Fig. 3

Optical transmittance data of the green pump beam, the 870 nm OPO signal, and the 435 nm blue SHG light of the PPLT sample A at a crystal cut-back length of (a) 20 and (b) 10 mm (red dashed curves, linear fit to the transmitted power of the OPO signal wave).

Fig. 4
Fig. 4

(a) Measurement of the upconversion blue efficiency of a 15 mm long PPLT sample B of 7.9 μ m period (red dashed curve, differential slope at 400 mW pump). Inset, crystal length dependence of the differential slope efficiency for the blue lasers measured for a 400 mW green pump. (b) Calculated output power of the upconversion blue lasers at an optical loss Γ of 99% and crystal lengths of 10, 15, and 20 mm . Inset, calculated crystal length dependence of the differential slope efficiency for the blue lasers for a green pump power of 400 mW .

Metrics