Abstract

We report wide and flattened supercontinuum generation in zero-dispersion-wavelength-decreasing tellurite microstructured fibers fabricated by using the tapering method. Flattened supercontinuum light expanding from 600to2800nm can be generated when launching a 1550nm femtosecond fiber laser into a 5-cm-long, zero-dispersion-decreasing, tellurite microstructured fiber. Our results show that short length (several centimeter) zero-dispersion-wavelength decreasing highly nonlinear fiber has a potential for generating wide and flattened supercontinuum light sources.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. E. Town and J. T. Lizier, Opt. Lett. 26, 1042 (2001).
    [CrossRef]
  2. M. L. V. Tse, P. Horak, J. H. V. Price, F. Poletti, F. He, and D. J. Richardson, Opt. Lett. 31, 3504 (2006).
    [CrossRef] [PubMed]
  3. A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, Opt. Express 14, 5716 (2006).
    [CrossRef]
  4. H. Hundertmark, S. Rammler, T. Wilken, R. Holzwarth, T. W. Hänsch, and P. S. Russell, Opt. Express 17, 1919 (2009).
    [CrossRef] [PubMed]
  5. J. T. Gopinath, H. M. Shen, H. Sotobayashi, E. P. Ippen, T. Hasegawa, T. Nagashima, and N. Sugimoto, Opt. Express 12, 5697 (2004).
    [CrossRef] [PubMed]
  6. P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, Opt. Express 16, 7161 (2008).
    [CrossRef] [PubMed]
  7. M. S. Liao, C. Chaudhari, G. S. Qin, X. Yan, T. Suzuki, and Y. Ohishi, Opt. Express 17, 12174 (2009).
    [CrossRef] [PubMed]
  8. D. I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, Opt. Lett. 33, 660 (2008).
    [CrossRef] [PubMed]
  9. A. Mori, K. Shikano, K. Enbutsu, K. Oikawa, K. Naganuma, M. Kato, and S. Aozasa, in European Conference on Optical Communication (2004), paper Th3.3.6.
  10. J. C. Travers and J. R. Taylor, Opt. Lett. 34, 115 (2009).
    [CrossRef] [PubMed]
  11. G. S. Qin, R. Jose, and Y. Ohishi, J. Appl. Phys. 101, 093109 (2007).
    [CrossRef]

2009 (3)

2008 (2)

2007 (1)

G. S. Qin, R. Jose, and Y. Ohishi, J. Appl. Phys. 101, 093109 (2007).
[CrossRef]

2006 (2)

M. L. V. Tse, P. Horak, J. H. V. Price, F. Poletti, F. He, and D. J. Richardson, Opt. Lett. 31, 3504 (2006).
[CrossRef] [PubMed]

A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, Opt. Express 14, 5716 (2006).
[CrossRef]

2004 (1)

2001 (1)

Aozasa, S.

A. Mori, K. Shikano, K. Enbutsu, K. Oikawa, K. Naganuma, M. Kato, and S. Aozasa, in European Conference on Optical Communication (2004), paper Th3.3.6.

Chaudhari, C.

Cordeiro, C. M. B.

Cronin-Golomb, M.

Domachuk, P.

Eggleton, B. J.

Enbutsu, K.

A. Mori, K. Shikano, K. Enbutsu, K. Oikawa, K. Naganuma, M. Kato, and S. Aozasa, in European Conference on Optical Communication (2004), paper Th3.3.6.

Fu, L.

George, A. K.

P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, Opt. Express 16, 7161 (2008).
[CrossRef] [PubMed]

A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, Opt. Express 14, 5716 (2006).
[CrossRef]

Gopinath, J. T.

Hänsch, T. W.

Hasegawa, T.

He, F.

Holzwarth, R.

Horak, P.

Hundertmark, H.

Ippen, E. P.

Jose, R.

G. S. Qin, R. Jose, and Y. Ohishi, J. Appl. Phys. 101, 093109 (2007).
[CrossRef]

Kato, M.

A. Mori, K. Shikano, K. Enbutsu, K. Oikawa, K. Naganuma, M. Kato, and S. Aozasa, in European Conference on Optical Communication (2004), paper Th3.3.6.

Knight, J. C.

P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, Opt. Express 16, 7161 (2008).
[CrossRef] [PubMed]

A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, Opt. Express 14, 5716 (2006).
[CrossRef]

Kudlinski, A.

A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, Opt. Express 14, 5716 (2006).
[CrossRef]

Lamont, M. R. E.

Liao, M. S.

Lizier, J. T.

Mägi, E. C.

Mori, A.

A. Mori, K. Shikano, K. Enbutsu, K. Oikawa, K. Naganuma, M. Kato, and S. Aozasa, in European Conference on Optical Communication (2004), paper Th3.3.6.

Naganuma, K.

A. Mori, K. Shikano, K. Enbutsu, K. Oikawa, K. Naganuma, M. Kato, and S. Aozasa, in European Conference on Optical Communication (2004), paper Th3.3.6.

Nagashima, T.

Ohishi, Y.

Oikawa, K.

A. Mori, K. Shikano, K. Enbutsu, K. Oikawa, K. Naganuma, M. Kato, and S. Aozasa, in European Conference on Optical Communication (2004), paper Th3.3.6.

Omenetto, F. G.

Poletti, F.

Popov, S. V.

A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, Opt. Express 14, 5716 (2006).
[CrossRef]

Price, J. H. V.

Qin, G. S.

Rammler, S.

Richardson, D. J.

Roelens, M. A. F.

Rulkov, A. B.

A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, Opt. Express 14, 5716 (2006).
[CrossRef]

Russell, P. S.

Shen, H. M.

Shikano, K.

A. Mori, K. Shikano, K. Enbutsu, K. Oikawa, K. Naganuma, M. Kato, and S. Aozasa, in European Conference on Optical Communication (2004), paper Th3.3.6.

Sotobayashi, H.

Sugimoto, N.

Suzuki, T.

Taylor, J. R.

J. C. Travers and J. R. Taylor, Opt. Lett. 34, 115 (2009).
[CrossRef] [PubMed]

A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, Opt. Express 14, 5716 (2006).
[CrossRef]

Town, G. E.

Travers, J. C.

J. C. Travers and J. R. Taylor, Opt. Lett. 34, 115 (2009).
[CrossRef] [PubMed]

A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, Opt. Express 14, 5716 (2006).
[CrossRef]

Tse, M. L. V.

Wang, A.

Wilken, T.

Wolchover, N. A.

Yan, X.

Yeom, D. I.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(a) Dependence of the tapered fiber core diameter on the position of the fiber. Inset, cross-section images of tapered fiber. (b) Calculated dispersion data of the fundamental mode in dispersion varying tellurite microstructured fibers at the segments with core diameters of 4.2, 2.1, and 1.2 μ m shown in (a).

Fig. 2
Fig. 2

(a) Dependence of the SC spectra output from the tapered fiber [from position 0 to 50 cm , including both the zero-dispersion-wavelength decreasing and increasing regions shown in Fig. 1a] on the pumping peak power of the femtosecond fiber laser (the maximum launched peak power of pump laser is 10.7 kW ). (b) Comparison of SC spectra generated from the tapered or untapered tellurite microstructured fiber with the same fiber length ( 50 cm ) when the pumping peak power was fixed at 10.7 kW . Inset, simulated SC spectra output from 15-cm-long original untapered fiber (solid line), the tapered fiber from position 0 to 15 cm shown in Fig. 1a (dashed line), and the tapered fiber from position 0 to 50 cm shown in Fig. 1a (dotted line).

Metrics