Abstract

We demonstrate the image conversion from mid-IR to near-IR (NIR) exploiting high-contrast optical switching in vanadium oxide thin-film layers. The intensity distribution of a mid-IR beam is converted to NIR wavelengths exploiting the strong reflectivity changes induced by optical pumping in the mid-IR. We show an experimental setup in which the radiation of a Tm-doped fiber laser at 1940μm and a carbon dioxide at 10.6μm has been converted to both 850nm and 1064nm. The resolution was 35μm and was reached by using an inexpensive CCD camera. The sensitivity of the device increases linearly with sample temperature. We measured a threshold of 144mWcm2, with a sample temperature of 62°C.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. Treado, I. W. Levin, and N. Lewis, Appl. Spectrosc. 48, 545 (1994).
    [CrossRef]
  2. C. Chen, X. Yi, X. Zhao, and B. Xiong, Sens. Actuators, A 90, 212 (2001).
    [CrossRef]
  3. E. Chain, Appl. Opt. 30, 2782 (1991).
    [CrossRef] [PubMed]
  4. T. Ben-Messaouda, G. Landrya, J. P. Gariépya, B. Ramamoorthya, P. V. Ashrita, and A. Haché, Opt. Commun. 281, 6024 (2008).
    [CrossRef]
  5. R. Balu and P. V. Ashrit, Appl. Phys. Lett. 92, 021904 (2008).
    [CrossRef]
  6. S. Wu, U. Efron, and T. Hsu, Opt. Lett. 13, 13 (1988).
    [CrossRef] [PubMed]
  7. D. Brida, C. Manzoni, G. Cirmi, M. Marangoni, S. De Silvestri, and G. Cerullo, Opt. Express 15, 15035 (2007).
    [CrossRef] [PubMed]
  8. S. Shim, D. B. Strasfeld, and M. T. Zanni, Opt. Express 14, 13120 (2006).
    [CrossRef] [PubMed]
  9. M. Rini, Z. Hao, R. W. Schoenlein, C. Giannetti, F. Parmigiani, S. Fourmaux, J. C. Kieffer, A. Fujimori, M. Onoda, S. Wall, and A. Cavalleri, Appl. Phys. Lett. 92, 181904 (2008).
    [CrossRef]

2008 (3)

T. Ben-Messaouda, G. Landrya, J. P. Gariépya, B. Ramamoorthya, P. V. Ashrita, and A. Haché, Opt. Commun. 281, 6024 (2008).
[CrossRef]

R. Balu and P. V. Ashrit, Appl. Phys. Lett. 92, 021904 (2008).
[CrossRef]

M. Rini, Z. Hao, R. W. Schoenlein, C. Giannetti, F. Parmigiani, S. Fourmaux, J. C. Kieffer, A. Fujimori, M. Onoda, S. Wall, and A. Cavalleri, Appl. Phys. Lett. 92, 181904 (2008).
[CrossRef]

2007 (1)

2006 (1)

2001 (1)

C. Chen, X. Yi, X. Zhao, and B. Xiong, Sens. Actuators, A 90, 212 (2001).
[CrossRef]

1994 (1)

1991 (1)

1988 (1)

Ashrit, P. V.

R. Balu and P. V. Ashrit, Appl. Phys. Lett. 92, 021904 (2008).
[CrossRef]

Ashrita, P. V.

T. Ben-Messaouda, G. Landrya, J. P. Gariépya, B. Ramamoorthya, P. V. Ashrita, and A. Haché, Opt. Commun. 281, 6024 (2008).
[CrossRef]

Balu, R.

R. Balu and P. V. Ashrit, Appl. Phys. Lett. 92, 021904 (2008).
[CrossRef]

Ben-Messaouda, T.

T. Ben-Messaouda, G. Landrya, J. P. Gariépya, B. Ramamoorthya, P. V. Ashrita, and A. Haché, Opt. Commun. 281, 6024 (2008).
[CrossRef]

Brida, D.

Cavalleri, A.

M. Rini, Z. Hao, R. W. Schoenlein, C. Giannetti, F. Parmigiani, S. Fourmaux, J. C. Kieffer, A. Fujimori, M. Onoda, S. Wall, and A. Cavalleri, Appl. Phys. Lett. 92, 181904 (2008).
[CrossRef]

Cerullo, G.

Chain, E.

Chen, C.

C. Chen, X. Yi, X. Zhao, and B. Xiong, Sens. Actuators, A 90, 212 (2001).
[CrossRef]

Cirmi, G.

De Silvestri, S.

Efron, U.

Fourmaux, S.

M. Rini, Z. Hao, R. W. Schoenlein, C. Giannetti, F. Parmigiani, S. Fourmaux, J. C. Kieffer, A. Fujimori, M. Onoda, S. Wall, and A. Cavalleri, Appl. Phys. Lett. 92, 181904 (2008).
[CrossRef]

Fujimori, A.

M. Rini, Z. Hao, R. W. Schoenlein, C. Giannetti, F. Parmigiani, S. Fourmaux, J. C. Kieffer, A. Fujimori, M. Onoda, S. Wall, and A. Cavalleri, Appl. Phys. Lett. 92, 181904 (2008).
[CrossRef]

Gariépya, J. P.

T. Ben-Messaouda, G. Landrya, J. P. Gariépya, B. Ramamoorthya, P. V. Ashrita, and A. Haché, Opt. Commun. 281, 6024 (2008).
[CrossRef]

Giannetti, C.

M. Rini, Z. Hao, R. W. Schoenlein, C. Giannetti, F. Parmigiani, S. Fourmaux, J. C. Kieffer, A. Fujimori, M. Onoda, S. Wall, and A. Cavalleri, Appl. Phys. Lett. 92, 181904 (2008).
[CrossRef]

Haché, A.

T. Ben-Messaouda, G. Landrya, J. P. Gariépya, B. Ramamoorthya, P. V. Ashrita, and A. Haché, Opt. Commun. 281, 6024 (2008).
[CrossRef]

Hao, Z.

M. Rini, Z. Hao, R. W. Schoenlein, C. Giannetti, F. Parmigiani, S. Fourmaux, J. C. Kieffer, A. Fujimori, M. Onoda, S. Wall, and A. Cavalleri, Appl. Phys. Lett. 92, 181904 (2008).
[CrossRef]

Hsu, T.

Kieffer, J. C.

M. Rini, Z. Hao, R. W. Schoenlein, C. Giannetti, F. Parmigiani, S. Fourmaux, J. C. Kieffer, A. Fujimori, M. Onoda, S. Wall, and A. Cavalleri, Appl. Phys. Lett. 92, 181904 (2008).
[CrossRef]

Landrya, G.

T. Ben-Messaouda, G. Landrya, J. P. Gariépya, B. Ramamoorthya, P. V. Ashrita, and A. Haché, Opt. Commun. 281, 6024 (2008).
[CrossRef]

Levin, I. W.

Lewis, N.

Manzoni, C.

Marangoni, M.

Onoda, M.

M. Rini, Z. Hao, R. W. Schoenlein, C. Giannetti, F. Parmigiani, S. Fourmaux, J. C. Kieffer, A. Fujimori, M. Onoda, S. Wall, and A. Cavalleri, Appl. Phys. Lett. 92, 181904 (2008).
[CrossRef]

Parmigiani, F.

M. Rini, Z. Hao, R. W. Schoenlein, C. Giannetti, F. Parmigiani, S. Fourmaux, J. C. Kieffer, A. Fujimori, M. Onoda, S. Wall, and A. Cavalleri, Appl. Phys. Lett. 92, 181904 (2008).
[CrossRef]

Ramamoorthya, B.

T. Ben-Messaouda, G. Landrya, J. P. Gariépya, B. Ramamoorthya, P. V. Ashrita, and A. Haché, Opt. Commun. 281, 6024 (2008).
[CrossRef]

Rini, M.

M. Rini, Z. Hao, R. W. Schoenlein, C. Giannetti, F. Parmigiani, S. Fourmaux, J. C. Kieffer, A. Fujimori, M. Onoda, S. Wall, and A. Cavalleri, Appl. Phys. Lett. 92, 181904 (2008).
[CrossRef]

Schoenlein, R. W.

M. Rini, Z. Hao, R. W. Schoenlein, C. Giannetti, F. Parmigiani, S. Fourmaux, J. C. Kieffer, A. Fujimori, M. Onoda, S. Wall, and A. Cavalleri, Appl. Phys. Lett. 92, 181904 (2008).
[CrossRef]

Shim, S.

Strasfeld, D. B.

Treado, P. J.

Wall, S.

M. Rini, Z. Hao, R. W. Schoenlein, C. Giannetti, F. Parmigiani, S. Fourmaux, J. C. Kieffer, A. Fujimori, M. Onoda, S. Wall, and A. Cavalleri, Appl. Phys. Lett. 92, 181904 (2008).
[CrossRef]

Wu, S.

Xiong, B.

C. Chen, X. Yi, X. Zhao, and B. Xiong, Sens. Actuators, A 90, 212 (2001).
[CrossRef]

Yi, X.

C. Chen, X. Yi, X. Zhao, and B. Xiong, Sens. Actuators, A 90, 212 (2001).
[CrossRef]

Zanni, M. T.

Zhao, X.

C. Chen, X. Yi, X. Zhao, and B. Xiong, Sens. Actuators, A 90, 212 (2001).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

R. Balu and P. V. Ashrit, Appl. Phys. Lett. 92, 021904 (2008).
[CrossRef]

M. Rini, Z. Hao, R. W. Schoenlein, C. Giannetti, F. Parmigiani, S. Fourmaux, J. C. Kieffer, A. Fujimori, M. Onoda, S. Wall, and A. Cavalleri, Appl. Phys. Lett. 92, 181904 (2008).
[CrossRef]

Appl. Spectrosc. (1)

Opt. Commun. (1)

T. Ben-Messaouda, G. Landrya, J. P. Gariépya, B. Ramamoorthya, P. V. Ashrita, and A. Haché, Opt. Commun. 281, 6024 (2008).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Sens. Actuators, A (1)

C. Chen, X. Yi, X. Zhao, and B. Xiong, Sens. Actuators, A 90, 212 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Outline of the experimental setup. The mid-IR laser (Tm fiber laser at 1940 nm or C O 2 at 10.6 μ m ) induces local transmission change in the V O 2 layer, which modulates the NIR reading beam ( 850 nm diode laser or 1064 nm Nd:YAG laser), which copropagates with the mid-IR after the beam splitter. The inset shows the switching transmission of the V O 2 film for sample temperatures below and over 68°. (b) Beam profile of a thulium-doped fiber laser ( 10 Hz , 8 ms , 10 W cm 2 ) probed with a reading light at 850 nm , 1 mW . The FWHM of the beam is 2.241 mm × 2.209 mm .

Fig. 2
Fig. 2

Transmission measurements under Tm laser square pulses. V O 2 layer temperature was 22 ° C . Pump laser repetition rate, 100 Hz ; Ton = 5 ms .

Fig. 3
Fig. 3

Transmission change in 100-nm-thick V O 2 layer at a temperature of 62 ° C . Pump laser repetition rate, 100 Hz ; Ton = 5 ms .

Fig. 4
Fig. 4

(a) Detection of a USAF x1 target mask image illuminated with Tm laser (18 ms at 8 Hz, 3 W cm 2 , T V O 2 53°). (b) Detection of Tm fiber laser (8 ms at 10 Hz, 3 W cm 2 , T V O 2 60°) by an 850 nm diode laser. The image is the interference pattern generated by an opaque cross printed on a glass support. (c) and (d) Image of a cross and a circular aperture printed in an aluminum frame with a C O 2 (4 ms at 10 Hz, 88 W cm 2 , T V O 2 40 ° C ) laser and an 850 nm as a reading beam.

Metrics