Abstract

We report on a concept of compact optical Fourier-transform spectrometer based on bidimensional (2D) spatial sampling of a confined interferogram. The spectrometer consists of a nanostructured glass surface on which two light beams interfere in total internal reflection. Subwavelength spatial sampling of the interferogram near field is achieved by introducing a tilt angle between a 2D array of optical nanoantennas and the interferogram pattern. The intensity distribution of the scattered light is recorded on a 2D CCD camera, and a one-dimensional Fourier transform of the interferogram is used to recover the input light spectrum. Experimental results show a wide spectral bandwidth in the visible range, down to 380nm, with spectral resolution of 1.6nm around 780nm.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Monzardo, H. P. Herzig, C. R. Marxer, and N. F. de Rooij, Opt. Lett. 24, 1705 (1999).
    [CrossRef]
  2. S. D. Collins, R. L. Smith, C. Gonzalez, K. P. Stewart, J. G. Hagopian, and J. M. Sirota, Opt. Lett. 24, 844 (1999).
    [CrossRef]
  3. H. Stiebig, D. Knipp, S. R. Bhalotra, H. L. Kung, and D. A. B. Miller, Sens. Actuators A Phys. 120, 110 (2005).
    [CrossRef]
  4. V. Jovanov, J. Ivanchev, and D. Knipp, Opt. Express 18, 426(2010).
    [CrossRef] [PubMed]
  5. D. Knipp, H. Stiebig, S. R. Bhalotra, E. Bunte, H. L. Kung, and D. A. B. Miller, IEEE Trans. Electron Devices 52, 419 (2005).
    [CrossRef]
  6. T. Okamoto, S. Kawata, and S. Minami, Appl. Opt. 23, 269(1984).
    [CrossRef] [PubMed]
  7. B. A. Patterson, M. Antoni, J. Courtial, A. J. Duncan, W. Sibbett, and M. J. Padgett, Opt. Commun. 130, 1 (1996).
    [CrossRef]
  8. J. Courtial, B. A. Patterson, A. R. Harvey, W. Sibbett, and M. J. Padgett, Appl. Opt. 35, 6698 (1996).
    [CrossRef] [PubMed]
  9. N. I. Agladze and A. J. Sivers, Appl. Opt. 43, 6568 (2004).
    [CrossRef]
  10. E. le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, Nat. Photon. 1, 473 (2007).
    [CrossRef]
  11. R. G. Lyons, Understanding Digital Signal Processing: Periodic Sampling (Prentice Hall PTR, 2004).

2010 (1)

2007 (1)

E. le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, Nat. Photon. 1, 473 (2007).
[CrossRef]

2005 (2)

D. Knipp, H. Stiebig, S. R. Bhalotra, E. Bunte, H. L. Kung, and D. A. B. Miller, IEEE Trans. Electron Devices 52, 419 (2005).
[CrossRef]

H. Stiebig, D. Knipp, S. R. Bhalotra, H. L. Kung, and D. A. B. Miller, Sens. Actuators A Phys. 120, 110 (2005).
[CrossRef]

2004 (1)

1999 (2)

1996 (2)

B. A. Patterson, M. Antoni, J. Courtial, A. J. Duncan, W. Sibbett, and M. J. Padgett, Opt. Commun. 130, 1 (1996).
[CrossRef]

J. Courtial, B. A. Patterson, A. R. Harvey, W. Sibbett, and M. J. Padgett, Appl. Opt. 35, 6698 (1996).
[CrossRef] [PubMed]

1984 (1)

Agladze, N. I.

Antoni, M.

B. A. Patterson, M. Antoni, J. Courtial, A. J. Duncan, W. Sibbett, and M. J. Padgett, Opt. Commun. 130, 1 (1996).
[CrossRef]

Benech, P.

E. le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, Nat. Photon. 1, 473 (2007).
[CrossRef]

Bhalotra, S. R.

D. Knipp, H. Stiebig, S. R. Bhalotra, E. Bunte, H. L. Kung, and D. A. B. Miller, IEEE Trans. Electron Devices 52, 419 (2005).
[CrossRef]

H. Stiebig, D. Knipp, S. R. Bhalotra, H. L. Kung, and D. A. B. Miller, Sens. Actuators A Phys. 120, 110 (2005).
[CrossRef]

Blaize, S.

E. le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, Nat. Photon. 1, 473 (2007).
[CrossRef]

Bunte, E.

D. Knipp, H. Stiebig, S. R. Bhalotra, E. Bunte, H. L. Kung, and D. A. B. Miller, IEEE Trans. Electron Devices 52, 419 (2005).
[CrossRef]

Collins, S. D.

Courtial, J.

B. A. Patterson, M. Antoni, J. Courtial, A. J. Duncan, W. Sibbett, and M. J. Padgett, Opt. Commun. 130, 1 (1996).
[CrossRef]

J. Courtial, B. A. Patterson, A. R. Harvey, W. Sibbett, and M. J. Padgett, Appl. Opt. 35, 6698 (1996).
[CrossRef] [PubMed]

de Rooij, N. F.

Duncan, A. J.

B. A. Patterson, M. Antoni, J. Courtial, A. J. Duncan, W. Sibbett, and M. J. Padgett, Opt. Commun. 130, 1 (1996).
[CrossRef]

Fedeli, J. M.

E. le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, Nat. Photon. 1, 473 (2007).
[CrossRef]

Gonzalez, C.

Hagopian, J. G.

Harvey, A. R.

Herzig, H. P.

Ivanchev, J.

Jovanov, V.

Kawata, S.

Kern, P.

E. le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, Nat. Photon. 1, 473 (2007).
[CrossRef]

Knipp, D.

V. Jovanov, J. Ivanchev, and D. Knipp, Opt. Express 18, 426(2010).
[CrossRef] [PubMed]

D. Knipp, H. Stiebig, S. R. Bhalotra, E. Bunte, H. L. Kung, and D. A. B. Miller, IEEE Trans. Electron Devices 52, 419 (2005).
[CrossRef]

H. Stiebig, D. Knipp, S. R. Bhalotra, H. L. Kung, and D. A. B. Miller, Sens. Actuators A Phys. 120, 110 (2005).
[CrossRef]

Kung, H. L.

D. Knipp, H. Stiebig, S. R. Bhalotra, E. Bunte, H. L. Kung, and D. A. B. Miller, IEEE Trans. Electron Devices 52, 419 (2005).
[CrossRef]

H. Stiebig, D. Knipp, S. R. Bhalotra, H. L. Kung, and D. A. B. Miller, Sens. Actuators A Phys. 120, 110 (2005).
[CrossRef]

le Coarer, E.

E. le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, Nat. Photon. 1, 473 (2007).
[CrossRef]

Leblond, G.

E. le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, Nat. Photon. 1, 473 (2007).
[CrossRef]

Lérondel, G.

E. le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, Nat. Photon. 1, 473 (2007).
[CrossRef]

Lyons, R. G.

R. G. Lyons, Understanding Digital Signal Processing: Periodic Sampling (Prentice Hall PTR, 2004).

Marxer, C. R.

Miller, D. A. B.

H. Stiebig, D. Knipp, S. R. Bhalotra, H. L. Kung, and D. A. B. Miller, Sens. Actuators A Phys. 120, 110 (2005).
[CrossRef]

D. Knipp, H. Stiebig, S. R. Bhalotra, E. Bunte, H. L. Kung, and D. A. B. Miller, IEEE Trans. Electron Devices 52, 419 (2005).
[CrossRef]

Minami, S.

Monzardo, O.

Morand, A.

E. le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, Nat. Photon. 1, 473 (2007).
[CrossRef]

Okamoto, T.

Padgett, M. J.

B. A. Patterson, M. Antoni, J. Courtial, A. J. Duncan, W. Sibbett, and M. J. Padgett, Opt. Commun. 130, 1 (1996).
[CrossRef]

J. Courtial, B. A. Patterson, A. R. Harvey, W. Sibbett, and M. J. Padgett, Appl. Opt. 35, 6698 (1996).
[CrossRef] [PubMed]

Patterson, B. A.

B. A. Patterson, M. Antoni, J. Courtial, A. J. Duncan, W. Sibbett, and M. J. Padgett, Opt. Commun. 130, 1 (1996).
[CrossRef]

J. Courtial, B. A. Patterson, A. R. Harvey, W. Sibbett, and M. J. Padgett, Appl. Opt. 35, 6698 (1996).
[CrossRef] [PubMed]

Royer, P.

E. le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, Nat. Photon. 1, 473 (2007).
[CrossRef]

Sibbett, W.

J. Courtial, B. A. Patterson, A. R. Harvey, W. Sibbett, and M. J. Padgett, Appl. Opt. 35, 6698 (1996).
[CrossRef] [PubMed]

B. A. Patterson, M. Antoni, J. Courtial, A. J. Duncan, W. Sibbett, and M. J. Padgett, Opt. Commun. 130, 1 (1996).
[CrossRef]

Sirota, J. M.

Sivers, A. J.

Smith, R. L.

Stefanon, I.

E. le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, Nat. Photon. 1, 473 (2007).
[CrossRef]

Stewart, K. P.

Stiebig, H.

H. Stiebig, D. Knipp, S. R. Bhalotra, H. L. Kung, and D. A. B. Miller, Sens. Actuators A Phys. 120, 110 (2005).
[CrossRef]

D. Knipp, H. Stiebig, S. R. Bhalotra, E. Bunte, H. L. Kung, and D. A. B. Miller, IEEE Trans. Electron Devices 52, 419 (2005).
[CrossRef]

Appl. Opt. (3)

IEEE Trans. Electron Devices (1)

D. Knipp, H. Stiebig, S. R. Bhalotra, E. Bunte, H. L. Kung, and D. A. B. Miller, IEEE Trans. Electron Devices 52, 419 (2005).
[CrossRef]

Nat. Photon. (1)

E. le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, Nat. Photon. 1, 473 (2007).
[CrossRef]

Opt. Commun. (1)

B. A. Patterson, M. Antoni, J. Courtial, A. J. Duncan, W. Sibbett, and M. J. Padgett, Opt. Commun. 130, 1 (1996).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Sens. Actuators A Phys. (1)

H. Stiebig, D. Knipp, S. R. Bhalotra, H. L. Kung, and D. A. B. Miller, Sens. Actuators A Phys. 120, 110 (2005).
[CrossRef]

Other (1)

R. G. Lyons, Understanding Digital Signal Processing: Periodic Sampling (Prentice Hall PTR, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Bidimensional sampling principle: (a) SEM image of the nanostructured cover glass showing a 2D array of 80 nm diameter lithographic gold dots. (b) Schematic view of the tilted configuration. The adjacent nanoprobes (here labeled 1 to 6) along a tilted line sample a segment of the interferogram with a sampling interval much smaller than the 2D array longitudinal period.

Fig. 2
Fig. 2

Experimental setup used to demonstrate the spectroscopic function of the 2D near-field sampling principle. The evanescent interferogram localized on the top facet of the cover glass is sampled with a 2D array of optical nano probes, which scatter a fraction of the evanescent field. An image of the sampled interferogram is recorded on a camera, processed, and Fourier transformed to reconstruct the spectrum of the source.

Fig. 3
Fig. 3

Spectra of the DFB laser set at 781 nm . The extracted interferogram profile is sampled with 1600 channels over a sampling length of 68 μm . The spatial frequencies are calibrated with a reference He–Ne laser at 532 and 633 nm .

Fig. 4
Fig. 4

Resolving power of the setup in the case of 177 μm total sampling length. (a) Experimental spectra of the tunable DFB laser at three wavelengths: 780.0, 781.0, and 784.0 nm (measured with a standard OSA). (b) Comparison between the measured and simulated spectra obtained for 784 nm .

Metrics