Abstract

We demonstrate experimentally a transition from nonlinear beam trapping to defocusing in a two-dimensional periodic photonic structures by varying the modulation depth of the lattice. The observed effect illustrates the fundamental crossover from discrete to cw transport mechanisms. At the threshold modulation, the output beam is highly sensitive to refractive index and power variations, which can be potentially applied for high-sensitivity refractive index or temperature sensing.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995).
  2. J. T. Mok, C. M. de Sterke, I. C. M. Littler, and B. J. Eggleton, Nat. Phys. 2, 775 (2006).
    [CrossRef]
  3. Y. S. Kivshar and G. P. Agrawal, Optical Solitons: from Fibers to Photonic Crystals (Academic, 2003).
  4. R. W. Boyd, Nonlinear Optics (Academic, 1992).
  5. Y. S. Kivshar, Opt. Lett. 18, 1147 (1993).
    [CrossRef] [PubMed]
  6. R. F. Nabiev, P. Yeh, and D. Botez, Opt. Lett. 18, 1612(1993).
    [CrossRef] [PubMed]
  7. J. Feng, Opt. Lett. 18, 1302 (1993).
    [CrossRef] [PubMed]
  8. J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, Nature 422, 147 (2003).
    [CrossRef] [PubMed]
  9. J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, Phys. Rev. Lett. 90, 023902 (2003).
    [CrossRef] [PubMed]
  10. M. Matuszewski, C. R. Rosberg, D. N. Neshev, A. A. Sukhorukov, A. Mitchell, M. Trippenbach, M. W. Austin, W. Krolikowski, and Y. S. Kivshar, Opt. Express 14, 254 (2006).
    [CrossRef] [PubMed]
  11. D. N. Christodoulides, F. Lederer, and Y. Silberberg, Nature 424, 817 (2003).
    [CrossRef] [PubMed]
  12. C. R. Rosberg, F. H. Bennet, D. N. Neshev, P. D. Rasmussen, O. Bang, W. Krolikowski, A. Bjarklev, and Y. S. Kivshar, Opt. Express 15, 12145 (2007).
    [CrossRef] [PubMed]
  13. P. D. Rasmussen, F. H. Bennet, D. N. Neshev, A. A. Sukhorukov, C. R. Rosberg, W. Krolikowski, O. Bang, and Y. S. Kivshar, Opt. Lett. 34, 295 (2009).
    [CrossRef] [PubMed]
  14. S. Ghosh, W. Bao, D. L. Nika, S. Subrina, E. P. Pokatilov, C. N. Lau, and A. A. Balandin, Nat. Mater. 9, 555 (2010).
    [CrossRef] [PubMed]

2010 (1)

S. Ghosh, W. Bao, D. L. Nika, S. Subrina, E. P. Pokatilov, C. N. Lau, and A. A. Balandin, Nat. Mater. 9, 555 (2010).
[CrossRef] [PubMed]

2009 (1)

2007 (1)

2006 (2)

2003 (3)

J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, Nature 422, 147 (2003).
[CrossRef] [PubMed]

J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, Phys. Rev. Lett. 90, 023902 (2003).
[CrossRef] [PubMed]

D. N. Christodoulides, F. Lederer, and Y. Silberberg, Nature 424, 817 (2003).
[CrossRef] [PubMed]

1993 (3)

Agrawal, G. P.

Y. S. Kivshar and G. P. Agrawal, Optical Solitons: from Fibers to Photonic Crystals (Academic, 2003).

Austin, M. W.

Balandin, A. A.

S. Ghosh, W. Bao, D. L. Nika, S. Subrina, E. P. Pokatilov, C. N. Lau, and A. A. Balandin, Nat. Mater. 9, 555 (2010).
[CrossRef] [PubMed]

Bang, O.

Bao, W.

S. Ghosh, W. Bao, D. L. Nika, S. Subrina, E. P. Pokatilov, C. N. Lau, and A. A. Balandin, Nat. Mater. 9, 555 (2010).
[CrossRef] [PubMed]

Bennet, F. H.

Bjarklev, A.

Botez, D.

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, 1992).

Carmon, T.

J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, Phys. Rev. Lett. 90, 023902 (2003).
[CrossRef] [PubMed]

Christodoulides, D. N.

J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, Nature 422, 147 (2003).
[CrossRef] [PubMed]

J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, Phys. Rev. Lett. 90, 023902 (2003).
[CrossRef] [PubMed]

D. N. Christodoulides, F. Lederer, and Y. Silberberg, Nature 424, 817 (2003).
[CrossRef] [PubMed]

de Sterke, C. M.

J. T. Mok, C. M. de Sterke, I. C. M. Littler, and B. J. Eggleton, Nat. Phys. 2, 775 (2006).
[CrossRef]

Efremidis, N. K.

J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, Nature 422, 147 (2003).
[CrossRef] [PubMed]

J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, Phys. Rev. Lett. 90, 023902 (2003).
[CrossRef] [PubMed]

Eggleton, B. J.

J. T. Mok, C. M. de Sterke, I. C. M. Littler, and B. J. Eggleton, Nat. Phys. 2, 775 (2006).
[CrossRef]

Feng, J.

Fleischer, J. W.

J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, Phys. Rev. Lett. 90, 023902 (2003).
[CrossRef] [PubMed]

J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, Nature 422, 147 (2003).
[CrossRef] [PubMed]

Ghosh, S.

S. Ghosh, W. Bao, D. L. Nika, S. Subrina, E. P. Pokatilov, C. N. Lau, and A. A. Balandin, Nat. Mater. 9, 555 (2010).
[CrossRef] [PubMed]

Joannopoulos, J. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995).

Kivshar, Y. S.

Krolikowski, W.

Lau, C. N.

S. Ghosh, W. Bao, D. L. Nika, S. Subrina, E. P. Pokatilov, C. N. Lau, and A. A. Balandin, Nat. Mater. 9, 555 (2010).
[CrossRef] [PubMed]

Lederer, F.

D. N. Christodoulides, F. Lederer, and Y. Silberberg, Nature 424, 817 (2003).
[CrossRef] [PubMed]

Littler, I. C. M.

J. T. Mok, C. M. de Sterke, I. C. M. Littler, and B. J. Eggleton, Nat. Phys. 2, 775 (2006).
[CrossRef]

Matuszewski, M.

Meade, R. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995).

Mitchell, A.

Mok, J. T.

J. T. Mok, C. M. de Sterke, I. C. M. Littler, and B. J. Eggleton, Nat. Phys. 2, 775 (2006).
[CrossRef]

Nabiev, R. F.

Neshev, D. N.

Nika, D. L.

S. Ghosh, W. Bao, D. L. Nika, S. Subrina, E. P. Pokatilov, C. N. Lau, and A. A. Balandin, Nat. Mater. 9, 555 (2010).
[CrossRef] [PubMed]

Pokatilov, E. P.

S. Ghosh, W. Bao, D. L. Nika, S. Subrina, E. P. Pokatilov, C. N. Lau, and A. A. Balandin, Nat. Mater. 9, 555 (2010).
[CrossRef] [PubMed]

Rasmussen, P. D.

Rosberg, C. R.

Segev, M.

J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, Nature 422, 147 (2003).
[CrossRef] [PubMed]

J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, Phys. Rev. Lett. 90, 023902 (2003).
[CrossRef] [PubMed]

Silberberg, Y.

D. N. Christodoulides, F. Lederer, and Y. Silberberg, Nature 424, 817 (2003).
[CrossRef] [PubMed]

Subrina, S.

S. Ghosh, W. Bao, D. L. Nika, S. Subrina, E. P. Pokatilov, C. N. Lau, and A. A. Balandin, Nat. Mater. 9, 555 (2010).
[CrossRef] [PubMed]

Sukhorukov, A. A.

Trippenbach, M.

Winn, J. N.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995).

Yeh, P.

Nat. Mater. (1)

S. Ghosh, W. Bao, D. L. Nika, S. Subrina, E. P. Pokatilov, C. N. Lau, and A. A. Balandin, Nat. Mater. 9, 555 (2010).
[CrossRef] [PubMed]

Nat. Phys. (1)

J. T. Mok, C. M. de Sterke, I. C. M. Littler, and B. J. Eggleton, Nat. Phys. 2, 775 (2006).
[CrossRef]

Nature (2)

J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, Nature 422, 147 (2003).
[CrossRef] [PubMed]

D. N. Christodoulides, F. Lederer, and Y. Silberberg, Nature 424, 817 (2003).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (4)

Phys. Rev. Lett. (1)

J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, Phys. Rev. Lett. 90, 023902 (2003).
[CrossRef] [PubMed]

Other (3)

Y. S. Kivshar and G. P. Agrawal, Optical Solitons: from Fibers to Photonic Crystals (Academic, 2003).

R. W. Boyd, Nonlinear Optics (Academic, 1992).

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a), (b) Bandgap diagrams for refractive index modulation of 0.2 × 10 3 and 10 3 , respectively. (c) Propagation constants of the top (dashed curve) and bottom (solid curve) of the first and top of the second band (red dashed curve) versus index modulation. Shading marks the position of the bandgap. Inset, hexagonal array of infiltrated holes in the PCF cladding.

Fig. 2
Fig. 2

Calculated fraction of light in the input waveguide (log scale) over a range of index contrasts ( Δ n ) and nonlinear coefficients (γ). Linear (i), (iii), (v) and nonlinear (ii), (iv), (vi) output beam profiles corresponding to the marked points. The white dashed line corresponds to the crossover from focusing to defocusing; black curves indicate contours.

Fig. 3
Fig. 3

(top) Fraction of light in the input waveguide versus input power/nonlinear coefficient: experiments (points) and numerical simulations (solid curves). (i), (iii), (v) Experimental images of the output beam in the linear, and (ii), (iv), (vi) nonlinear, regime corresponding to marked points on the top plot and temperatures (i), (ii) 76 ° C ; (iii), (iv) 77 ° C ; and (v), (vi) 78 ° C .

Metrics