Abstract

We report a high-power picosecond optical parametric oscillator (OPO) synchronously pumped by a Yb fiber laser at 1.064μm, providing 11.7W of total average power in the near to mid-IR at 73% extraction efficiency. The OPO, based on a 50mm MgO:PPLN crystal, is pumped by 20.8ps pulses at 81.1MHz and can simultaneously deliver 7.1W of signal at 1.56μm and 4.6W of idler at 3.33μm for 16W of pump power. The oscillator has a threshold of 740mW, with maximum signal power of 7.4W at 1.47μm and idler power of 4.9W at 3.08μm at slope efficiencies of 51% and 31%, respectively. Wavelength coverage across 1.431.63μm (signal) and 4.163.06μm (idler) is obtained, with a total power of ~11 W and an extraction efficiency of ~68%, with pump depletion of ~78% maintained over most of the tuning range. The signal and idler output have a single-mode spatial profile and a peak-to-peak power stability of ±1.8% and ±2.9% over 1h at the highest power, respectively. A signal pulse duration of 17.3ps with a clean single-peak spectrum results in a time-bandwidth product of ~1.72, more than four times below the input pump pulses.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Patterson, S. Bigotta, M. Sheik-Bahae, D. Parisi, M. Tonelli, and R. Epstein, Opt. Express 16, 1704 (2008).
    [CrossRef] [PubMed]
  2. A. Baron, A. Ryasnyanskiy, N. Dubreuil, Ph. Delaye, Q. Vy Tran, S. Combrié, A. de Rossi, R. Frey, and G. Roosen, Opt. Express 17, 552 (2009).
    [CrossRef] [PubMed]
  3. J. Chung and A. Siegman, J. Opt. Soc. Am. B 10, 2201(1993).
    [CrossRef]
  4. B. Ruffing, A. Nebel, and R. Wallenstein, Appl. Phys. B 67, 537 (1998).
    [CrossRef]
  5. K. Finsterbusch, R. Urschel, and H. Zacharias, Appl. Phys. B 70, 741 (2000).
  6. C. W. Hoyt, M. Sheik-Bahae, and M. Ebrahimzadeh, Opt. Lett. 27, 1543 (2002).
    [CrossRef]
  7. D. A. Bryan, R. Gerson, and H. E. Tomaschke, Appl. Phys. Lett. 44, 847 (1984).
    [CrossRef]
  8. Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, Appl. Phys. Lett. 77, 2494 (2000).
    [CrossRef]
  9. M. V. O’Connor, M. A. Watson, D. P. Shepherd, D. C. Hanna, J. H. V. Price, A. Malinowski, J. Nilsson, N. G. R. Broderick, D. J. Richardson, and L. Lefort, Opt. Lett. 27, 1052 (2002).
    [CrossRef]
  10. T. P. Lamour, L. Kornaszewski, J. H. Sun, and D. T. Reid, Opt. Express 17, 14229 (2009).
    [CrossRef] [PubMed]
  11. F. Kienle, K. K. Chen, S. Alam, C. B. E. Gawith, J. I. Mackenzie, D. C. Hanna, D. J. Richardson, and D. P. Shepherd, Opt. Express 18, 7602 (2010).
    [CrossRef] [PubMed]

2010

2009

2008

2002

2000

K. Finsterbusch, R. Urschel, and H. Zacharias, Appl. Phys. B 70, 741 (2000).

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, Appl. Phys. Lett. 77, 2494 (2000).
[CrossRef]

1998

B. Ruffing, A. Nebel, and R. Wallenstein, Appl. Phys. B 67, 537 (1998).
[CrossRef]

1993

1984

D. A. Bryan, R. Gerson, and H. E. Tomaschke, Appl. Phys. Lett. 44, 847 (1984).
[CrossRef]

Alam, S.

Baron, A.

Bigotta, S.

Broderick, N. G. R.

Bryan, D. A.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, Appl. Phys. Lett. 44, 847 (1984).
[CrossRef]

Chen, K. K.

Chung, J.

Combrié, S.

de Rossi, A.

Delaye, Ph.

Dubreuil, N.

Ebrahimzadeh, M.

Epstein, R.

Finsterbusch, K.

K. Finsterbusch, R. Urschel, and H. Zacharias, Appl. Phys. B 70, 741 (2000).

Frey, R.

Furukawa, Y.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, Appl. Phys. Lett. 77, 2494 (2000).
[CrossRef]

Gawith, C. B. E.

Gerson, R.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, Appl. Phys. Lett. 44, 847 (1984).
[CrossRef]

Hanna, D. C.

Hoyt, C. W.

Kienle, F.

Kitamura, K.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, Appl. Phys. Lett. 77, 2494 (2000).
[CrossRef]

Kornaszewski, L.

Lamour, T. P.

Lefort, L.

Mackenzie, J. I.

Malinowski, A.

Miyamoto, A.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, Appl. Phys. Lett. 77, 2494 (2000).
[CrossRef]

Nebel, A.

B. Ruffing, A. Nebel, and R. Wallenstein, Appl. Phys. B 67, 537 (1998).
[CrossRef]

Nilsson, J.

O’Connor, M. V.

Parisi, D.

Patterson, W.

Price, J. H. V.

Reid, D. T.

Richardson, D. J.

Roosen, G.

Ruffing, B.

B. Ruffing, A. Nebel, and R. Wallenstein, Appl. Phys. B 67, 537 (1998).
[CrossRef]

Ryasnyanskiy, A.

Sheik-Bahae, M.

Shepherd, D. P.

Siegman, A.

Suda, N.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, Appl. Phys. Lett. 77, 2494 (2000).
[CrossRef]

Sun, J. H.

Takekawa, S.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, Appl. Phys. Lett. 77, 2494 (2000).
[CrossRef]

Terao, M.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, Appl. Phys. Lett. 77, 2494 (2000).
[CrossRef]

Tomaschke, H. E.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, Appl. Phys. Lett. 44, 847 (1984).
[CrossRef]

Tonelli, M.

Urschel, R.

K. Finsterbusch, R. Urschel, and H. Zacharias, Appl. Phys. B 70, 741 (2000).

Vy Tran, Q.

Wallenstein, R.

B. Ruffing, A. Nebel, and R. Wallenstein, Appl. Phys. B 67, 537 (1998).
[CrossRef]

Watson, M. A.

Zacharias, H.

K. Finsterbusch, R. Urschel, and H. Zacharias, Appl. Phys. B 70, 741 (2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Configuration of the ps OPO synchronously pumped by a mode-locked Yb fiber laser: ISO, optical isolator; HWP, half-wave plate; PBS, polarizing beam splitter. First HWP and PBS are used for power attenuation, while the second HWP is used to rotate the pump beam polarization.

Fig. 2
Fig. 2

Extracted signal and idler average power and corresponding pump depletion as a function of input pump power at 1.47 and 3.08 μm , respectively. ε s and ε i are external slope efficiencies.

Fig. 3
Fig. 3

OPO power performance, pump depletion, and output coupling values in the OPO tuning range from 1.43 to 1.63 μm for the signal and from 3.06 to 4.16 μm for the idler.

Fig. 4
Fig. 4

Typical intensity autocorrelation with the sech 2 fit (dotted line) and corresponding optical spectrum of OPO signal pulses at 1.47 μm at 7.4 W average output power.

Fig. 5
Fig. 5

Signal and idler power stability over time and corresponding spatial beam profiles at 1.47 and 3.08 μm , respectively, and at maximum output power.

Metrics