Abstract

We report the generation of high-energy high-peak power pulses in an all-normal dispersion fiber laser featuring large-mode-area photonic crystal fibers. The self-starting chirped-pulse fiber oscillator delivers 11W of average power at 15.5MHz repetition rate, resulting in 710nJ of pulse energy. The output pulses are dechirped outside the cavity from 7ps to nearly transform-limited duration of 300fs, leading to pulse peak powers as high as 1.9MW. Numerical simulations reveal that pulse shaping is dominated by the amplitude modulation and spectral filtering provided by a resonant semiconductor saturable absorber.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. H. Neuhaus, D. Bauer, J. Zhang, A. Killi, J. Kleinbauer, M. Kumkar, S. Weiler, M. Guina, D. H. Sutter, and T. Dekorsy, Opt. Express 16, 20530 (2008).
    [CrossRef] [PubMed]
  2. C. Baer, C. Kränkel, C. Saraceno, O. Heckl, M. Golling, R. Peters, K. Petermann, T. Südmeyer, G. Huber, and U. KellerOpt. Lett. 35, 2302 (2010).
    [CrossRef] [PubMed]
  3. K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, Opt. Lett. 18, 1080 (1993).
    [CrossRef] [PubMed]
  4. F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, Phys. Rev. Lett. 92, 213902 (2004).
    [CrossRef] [PubMed]
  5. L. M. Zhao, D. Y. Tang, and J. Wu, Opt. Lett. 31, 1788 (2006).
    [CrossRef] [PubMed]
  6. A. Chong, J. Buckley, W. Renninger, and F. Wise, Opt. Express 14, 10095 (2006).
    [CrossRef] [PubMed]
  7. A. Chong, W. H. Renninger, and F. W. Wise, J. Opt. Soc. Am. B 25, 140 (2008).
    [CrossRef]
  8. K. Kieu, W. H. Renninger, A. Chong, and F. W. Wise, Opt. Lett. 34, 593 (2009).
    [CrossRef] [PubMed]
  9. C. Lecaplain, C. Chédot, A. Hideur, B. Ortaç, and J. Limpert, Opt. Lett. 32, 2738 (2007).
    [CrossRef] [PubMed]
  10. B. Ortaç, O. Schmidt, T. Schreiber, J. Limpert, A. Tünnermann, and A. Hideur, Opt. Express 15, 10725 (2007).
    [CrossRef] [PubMed]
  11. C. Lecaplain, B. Ortaç, and A. Hideur, Opt. Lett. 34, 3731 (2009).
    [CrossRef] [PubMed]
  12. S. Lefrançois, K. Kieu, J. Deng, J. D. Kafka, and F. W. Wise, Opt. Lett. 35, 1569 (2010).
    [CrossRef] [PubMed]
  13. M. Baumgartl, B. Ortaç, C. Lecaplain, A. Hideur, J. Limpert, and A. Tünnermann, Opt. Lett. 35, 2311 (2010).
    [CrossRef] [PubMed]
  14. B. Ortaç, M. Baumgartl, J. Limpert, and A. Tünnermann, Opt. Lett. 34, 1585 (2009).
    [CrossRef] [PubMed]
  15. T. Schreiber, B. Ortaç, J. Limpert, and A. Tünnermann, Opt. Express 15, 8252 (2007).
    [CrossRef] [PubMed]

2010 (3)

2009 (3)

2008 (2)

2007 (3)

2006 (2)

2004 (1)

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

1993 (1)

Baer, C.

Bauer, D.

Baumgartl, M.

Buckley, J.

Buckley, J. R.

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Chédot, C.

Chong, A.

Clark, W. G.

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Dekorsy, T.

Deng, J.

Golling, M.

Guina, M.

Haus, H. A.

Heckl, O.

Hideur, A.

Huber, G.

Ilday, F. Ö.

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Ippen, E. P.

Kafka, J. D.

Keller, U.

Kieu, K.

Killi, A.

Kleinbauer, J.

Kränkel, C.

Kumkar, M.

Lecaplain, C.

Lefrançois, S.

Limpert, J.

Nelson, L. E.

Neuhaus, J. H.

Ortaç, B.

Petermann, K.

Peters, R.

Renninger, W.

Renninger, W. H.

Saraceno, C.

Schmidt, O.

Schreiber, T.

Südmeyer, T.

Sutter, D. H.

Tamura, K.

Tang, D. Y.

Tünnermann, A.

Weiler, S.

Wise, F.

Wise, F. W.

Wu, J.

Zhang, J.

Zhao, L. M.

J. Opt. Soc. Am. B (1)

Opt. Express (4)

Opt. Lett. (9)

Phys. Rev. Lett. (1)

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup of the mode-locked Yb-doped PCF laser: DM, dichroic mirror; HWP, QWP, half- and quarter-wave plate.

Fig. 2
Fig. 2

Outputs of the antiresonant SAM-based laser (solid curves): pulse autocorrelation (a) before and (b) after external compression. Inset, corresponding optical spectrum. Also shown are the numerical results calculated for 1 μJ intracavity pulse energy (dots).

Fig. 3
Fig. 3

Outputs of the resonant SAM-based laser (solid curves): (a) optical spectrum, pulse autocorrelation (b) before and (c) after external compression, and (d) rf spectrum. Also shown are the numerical results calculated for 1 μJ intracavity pulse energy (dots).

Fig. 4
Fig. 4

Top, temporal pulse evolution with (open circles) and without (open squares) SF. Bottom, optical spectra calculated at various locations with (solid curves) and without (dashed curves) SF: OC, output coupler; NP, NPE port; SA, saturable absorber.

Metrics