Abstract

We experimentally demonstrate that the reflection spectrum of a Brillouin dynamic grating in a polarization- maintaining fiber can be much narrower than the intrinsic linewidth of the stimulated Brillouin scattering, matching well with the theory of a fiber Bragg grating in terms of the linewidth and the reflectivity. A 3dB bandwidth as narrow as 10.5MHz is observed with the Brillouin dynamic grating generated in a 9m uniform fiber.

© 2010 Optical Society of America

Full Article  |  PDF Article

Corrections

Kwang Yong Song and Hyuk Jin Yoon, "Observation of narrowband intrinsic spectra of Brillouin dynamic gratings: erratum," Opt. Lett. 37, 5039-5039 (2012)
https://www.osapublishing.org/ol/abstract.cfm?uri=ol-37-24-5039

References

  • View by:
  • |
  • |
  • |

  1. K. Y. Song, W. Zou, Z. He, and K. Hotate, Opt. Lett. 33, 926 (2008).
    [CrossRef] [PubMed]
  2. V. P. Kalosha, W. Li, F. Wang, L. Chen, and X. Bao, Opt. Lett. 33, 2848 (2008).
    [CrossRef] [PubMed]
  3. K. Y. Song, W. Zou, Z. He, and K. Hotate, Opt. Lett. 34, 1381 (2009).
    [CrossRef] [PubMed]
  4. W. Zou, Z. He, and K. Hotate, Opt. Express 17, 1248 (2009).
    [CrossRef] [PubMed]
  5. K. Y. Song, K. Lee, and S. B. Lee, Opt. Express 17, 10344 (2009).
    [CrossRef] [PubMed]
  6. Y. Dong, L. Chen, and X. Bao, Opt. Lett. 35, 193 (2010).
    [CrossRef] [PubMed]
  7. K. Y. Song and H. J. Yoon, Opt. Lett. 35, 52 (2010).
    [CrossRef] [PubMed]
  8. W. Zou, Z. He, and K. Hotate, IEEE Photonics Technol. Lett. 22, 526 (2010).
    [CrossRef]
  9. T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
    [CrossRef]
  10. R. Ulrich, S. C. Rashleigh, and W. Eickhoff, Opt. Lett. 5, 273 (1980).
    [CrossRef] [PubMed]
  11. K. S. Chiang, J. Lightwave Technol. 8, 1850 (1990).
    [CrossRef]
  12. R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic, 2003).

2010 (3)

2009 (3)

2008 (2)

1997 (1)

T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
[CrossRef]

1990 (1)

K. S. Chiang, J. Lightwave Technol. 8, 1850 (1990).
[CrossRef]

1980 (1)

Bao, X.

Boyd, R. W.

R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic, 2003).

Chen, L.

Chiang, K. S.

K. S. Chiang, J. Lightwave Technol. 8, 1850 (1990).
[CrossRef]

Dong, Y.

Eickhoff, W.

Erdogan, T.

T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
[CrossRef]

He, Z.

Hotate, K.

Kalosha, V. P.

Lee, K.

Lee, S. B.

Li, W.

Rashleigh, S. C.

Song, K. Y.

Ulrich, R.

Wang, F.

Yoon, H. J.

Zou, W.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Operation scheme of a BDG in a PMF. Note that Δ v is determined by the local birefringence.

Fig. 2
Fig. 2

Experimental setup for the measurement of the intrinsic spectrum of the uniform BDG: LD, laser diode; EOM, electro-optic modulator; SSBM, single-sideband modulator; EDFA, Er-doped fiber amplifier; PBS, polarization beam splitter; PM, power meter; PD, photodetector. The inset shows the structure of the FUT.

Fig. 3
Fig. 3

(a) Measured Brillouin gain spectrum in the slow axis of the FUT. (b) Optical spectra measured in front of PD during the operation of the BDG.

Fig. 4
Fig. 4

Measured reflection spectra of the uniform BDGs with lengths of (a) 1, (b) 3.95, and (c) 9 m , respectively.

Fig. 5
Fig. 5

(a) Measured reflectivity as a function of the length of the uniform BDG. Note that the curve is the theoretical result based on Eq. (2). (b) Measured reflection bandwidth (FWHM) as a function of the length of the uniform BDG. Note that the bold and the dashed curves correspond to the best reciprocal fit and the weak FBG approximation, respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ ν = Δ n n · ν ,
r max = tanh 2 ( κ · L ) = tanh 2 ( 4 π 2 n eff 2 · γ e 2 · τ p · P 1 · P 2 n 0 · λ 3 · ρ 0 · ν B · c · A eff · L ) ,

Metrics