Abstract

We report tunable third-harmonic generation (THG) in an Ar-filled hollow-core photonic crystal fiber, pumped by broadband <2μJ, 30fs pulses from an amplified Ti:sapphire laser system. The overall dispersion is precisely controlled by balancing the negative dielectric susceptibility of the waveguide against the positive susceptibility of the gas. We demonstrate THG to a higher-order guided mode and show that the phase-matched UV wavelength is tunable by adjusting the gas pressure.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. G. Durfee, III, S. Backus, H. C. Kapteyn, and M. M. Murnane, Opt. Lett. 24, 697 (1999).
    [CrossRef]
  2. N. A. Anderson, C. G. Durfee, III, M. M. Murnane, H. C. Kapteyn, and R. J. Sension, Chem. Phys. Lett. 323, 365 (2000).
    [CrossRef]
  3. L. Bergé and S. Skupin, Opt. Lett. 33, 750 (2008).
    [CrossRef] [PubMed]
  4. S. Ullrich, T. Schults, M. Z. Zgierski, and A. Stolow, J. Am. Chem. Soc. 126, 2262 (2004).
    [CrossRef] [PubMed]
  5. J. F. Reintjes, Nonlinear Parametric Processes in Liquids and Gases (Academic, 1984).
  6. P. St.J. Russell, IEEE J. Lightwave Technol. 24, 4729 (2006).
    [CrossRef]
  7. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St.J. Russell, Science 298, 399 (2002).
    [CrossRef] [PubMed]
  8. D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, Science 301, 1702 (2003).
    [CrossRef] [PubMed]
  9. C. G. Durfee, III, S. Backus, M. M. Murnane, and H. C. Kapteyn, Opt. Lett. 22, 1565 (1997).
    [CrossRef]
  10. M. J. Renn, R. Pastel, and H. J. Lewandowski, Phys. Rev. Lett. 82, 1574 (1999).
    [CrossRef]
  11. The effective core diameter corresponds to a circle with the same area as the hexagonal core. In the present case, the distance between two diametrically opposite faces of the hexagonal core is 27.9μm, yielding to an effective circular core diameter of 29.6μm.
  12. E. A. J. Marcatili and R. A. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964).
  13. A. Börzsönyi, Z. Heiner, M. P. Kalashnikov, A. P. Kovács, and K. Osvay, Appl. Opt. 47, 4856 (2008).
    [CrossRef] [PubMed]
  14. Code provided by JCMwave GmbH (www.jcmwave.com).
  15. R. R. Alfano, P. L. Baldeck, P. P. Ho, and G. P. Agrawal, J. Opt. Soc. Am. B 6, 824 (1989).
    [CrossRef]

2008

2006

P. St.J. Russell, IEEE J. Lightwave Technol. 24, 4729 (2006).
[CrossRef]

2004

S. Ullrich, T. Schults, M. Z. Zgierski, and A. Stolow, J. Am. Chem. Soc. 126, 2262 (2004).
[CrossRef] [PubMed]

2003

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, Science 301, 1702 (2003).
[CrossRef] [PubMed]

2002

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St.J. Russell, Science 298, 399 (2002).
[CrossRef] [PubMed]

2000

N. A. Anderson, C. G. Durfee, III, M. M. Murnane, H. C. Kapteyn, and R. J. Sension, Chem. Phys. Lett. 323, 365 (2000).
[CrossRef]

1999

M. J. Renn, R. Pastel, and H. J. Lewandowski, Phys. Rev. Lett. 82, 1574 (1999).
[CrossRef]

C. G. Durfee, III, S. Backus, H. C. Kapteyn, and M. M. Murnane, Opt. Lett. 24, 697 (1999).
[CrossRef]

1997

1989

1964

E. A. J. Marcatili and R. A. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964).

Agrawal, G. P.

Ahmad, F. R.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, Science 301, 1702 (2003).
[CrossRef] [PubMed]

Alfano, R. R.

Anderson, N. A.

N. A. Anderson, C. G. Durfee, III, M. M. Murnane, H. C. Kapteyn, and R. J. Sension, Chem. Phys. Lett. 323, 365 (2000).
[CrossRef]

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St.J. Russell, Science 298, 399 (2002).
[CrossRef] [PubMed]

Backus, S.

Baldeck, P. L.

Benabid, F.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St.J. Russell, Science 298, 399 (2002).
[CrossRef] [PubMed]

Bergé, L.

Börzsönyi, A.

Durfee, C. G.

Gaeta, A. L.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, Science 301, 1702 (2003).
[CrossRef] [PubMed]

Gallagher, M. T.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, Science 301, 1702 (2003).
[CrossRef] [PubMed]

Heiner, Z.

Ho, P. P.

Kalashnikov, M. P.

Kapteyn, H. C.

Knight, J. C.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St.J. Russell, Science 298, 399 (2002).
[CrossRef] [PubMed]

Koch, K. W.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, Science 301, 1702 (2003).
[CrossRef] [PubMed]

Kovács, A. P.

Lewandowski, H. J.

M. J. Renn, R. Pastel, and H. J. Lewandowski, Phys. Rev. Lett. 82, 1574 (1999).
[CrossRef]

Marcatili, E. A. J.

E. A. J. Marcatili and R. A. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964).

Müller, D.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, Science 301, 1702 (2003).
[CrossRef] [PubMed]

Murnane, M. M.

Osvay, K.

Ouzounov, D. G.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, Science 301, 1702 (2003).
[CrossRef] [PubMed]

Pastel, R.

M. J. Renn, R. Pastel, and H. J. Lewandowski, Phys. Rev. Lett. 82, 1574 (1999).
[CrossRef]

Reintjes, J. F.

J. F. Reintjes, Nonlinear Parametric Processes in Liquids and Gases (Academic, 1984).

Renn, M. J.

M. J. Renn, R. Pastel, and H. J. Lewandowski, Phys. Rev. Lett. 82, 1574 (1999).
[CrossRef]

Russell, P. St.J.

P. St.J. Russell, IEEE J. Lightwave Technol. 24, 4729 (2006).
[CrossRef]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St.J. Russell, Science 298, 399 (2002).
[CrossRef] [PubMed]

Schmeltzer, R. A.

E. A. J. Marcatili and R. A. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964).

Schults, T.

S. Ullrich, T. Schults, M. Z. Zgierski, and A. Stolow, J. Am. Chem. Soc. 126, 2262 (2004).
[CrossRef] [PubMed]

Sension, R. J.

N. A. Anderson, C. G. Durfee, III, M. M. Murnane, H. C. Kapteyn, and R. J. Sension, Chem. Phys. Lett. 323, 365 (2000).
[CrossRef]

Silcox, J.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, Science 301, 1702 (2003).
[CrossRef] [PubMed]

Skupin, S.

Stolow, A.

S. Ullrich, T. Schults, M. Z. Zgierski, and A. Stolow, J. Am. Chem. Soc. 126, 2262 (2004).
[CrossRef] [PubMed]

Thomas, M. G.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, Science 301, 1702 (2003).
[CrossRef] [PubMed]

Ullrich, S.

S. Ullrich, T. Schults, M. Z. Zgierski, and A. Stolow, J. Am. Chem. Soc. 126, 2262 (2004).
[CrossRef] [PubMed]

Venkataraman, N.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, Science 301, 1702 (2003).
[CrossRef] [PubMed]

Zgierski, M. Z.

S. Ullrich, T. Schults, M. Z. Zgierski, and A. Stolow, J. Am. Chem. Soc. 126, 2262 (2004).
[CrossRef] [PubMed]

Appl. Opt.

Bell Syst. Tech. J.

E. A. J. Marcatili and R. A. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964).

Chem. Phys. Lett.

N. A. Anderson, C. G. Durfee, III, M. M. Murnane, H. C. Kapteyn, and R. J. Sension, Chem. Phys. Lett. 323, 365 (2000).
[CrossRef]

IEEE J. Lightwave Technol.

P. St.J. Russell, IEEE J. Lightwave Technol. 24, 4729 (2006).
[CrossRef]

J. Am. Chem. Soc.

S. Ullrich, T. Schults, M. Z. Zgierski, and A. Stolow, J. Am. Chem. Soc. 126, 2262 (2004).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B

Opt. Lett.

Phys. Rev. Lett.

M. J. Renn, R. Pastel, and H. J. Lewandowski, Phys. Rev. Lett. 82, 1574 (1999).
[CrossRef]

Science

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St.J. Russell, Science 298, 399 (2002).
[CrossRef] [PubMed]

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, Science 301, 1702 (2003).
[CrossRef] [PubMed]

Other

J. F. Reintjes, Nonlinear Parametric Processes in Liquids and Gases (Academic, 1984).

The effective core diameter corresponds to a circle with the same area as the hexagonal core. In the present case, the distance between two diametrically opposite faces of the hexagonal core is 27.9μm, yielding to an effective circular core diameter of 29.6μm.

Code provided by JCMwave GmbH (www.jcmwave.com).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental details. (a) Scanning electron micrograph of the kagomé PCF structure. (b) Measured loss and dispersion spectra in the range 700 to 1300 nm . (c) Schematic of the apparatus. The gray-shaded boxes are gas cells, and the dotted rectangles are flip mirrors. The PCF is 20.5 cm long.

Fig. 2
Fig. 2

Refractive index mismatch between pump (in the fundamental HE 11 mode) and several different higher-order modes at the third-harmonic frequency, for different values of gas pressure. The profile of | E | 2 for each UV mode is also plotted, the numbers indicating the pressure in bars. The step in pressure between adjacent curves is always equal to 1 bar .

Fig. 3
Fig. 3

Third-harmonic spectrum as a function of Ar pressure for two different pump pulse energies: (a) 0.7 μJ and (b) 1.3 μJ . Also shown are theoretical phase-matching curves for different core radii, the solid curve corresponding to a core radius of 14.9 μm . (c) Measured and (d) calculated near-field mode profiles of the third harmonic at the fiber end face.

Fig. 4
Fig. 4

Measured third-harmonic power as a function of average pump power at a pressure of 5.1 bars . The full curve is based on Eq. (6). The arrow marks the efficiency at a power of 1 mW (pulse energy 1 μJ ).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

n ( m n ) ( λ ) = n Ar 2 ( λ ) u m n 2 k 2 a 2 = 1 + δ ( λ ) p p 0 u m n 2 k 2 a 2 1 + δ ( λ ) p 2 p 0 u m n 2 2 k 2 a 2 ,
δ ( λ ) = T 0 T ( B 1 1 ( λ 1 / λ ) 2 + B 2 1 ( λ 2 / λ ) 2 ) ,
n ( 11 ) ( λ , p ) n ( m n ) ( λ / 3 , p ) = 0.
( / z + D 3 ) E 3 = i κ 3 E 1 3 + i ϑ E 3 + 2 i γ XP E 3 | E 1 | 2 α 3 E 3 ,
G = ψ 3 ( ρ , ϕ ) ψ 1 3 ( ρ , ϕ ) ρ d ϕ d ρ ψ 3 2 ( ρ , ϕ ) ρ d ϕ d ρ ,
| F 3 ( Ω ) | 2 = 4 κ 3 2 | I ( Ω ) | 2 [ α 3 2 + ( Ω ζ + ϑ ) 2 ] 1 ,

Metrics