Abstract

We demonstrate a miniature self-injection locked distributed-feedback laser using resonant optical feedback from a high-Q crystalline whispering-gallery-mode resonator. The linewidth reduction factor is greater than 10,000, with resultant instantaneous linewidth of less than 200Hz. The minimal value of the Allan deviation for the laser- frequency stability is 3×1012 at the integration time of 20μs. The laser possesses excellent spectral purity and good long-term stability.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Dahmani, L. Hollberg, and R. Drullinger, Opt. Lett. 12, 876 (1987).
    [CrossRef] [PubMed]
  2. L. Hollberg and M. Ohtsu, Appl. Phys. Lett. 53, 944 (1988).
    [CrossRef]
  3. A. Hemmerich, C. Zimmermann, and T. W. Han¨sch, Appl. Opt. 33, 988 (1994).
    [PubMed]
  4. M. L. Gorodetsky, A. D. Pryamikov, and V. S. Ilchenko, J. Opt. Soc. Am. B 17, 1051 (2000).
    [CrossRef]
  5. V. V. Vassiliev, V. L. Velichansky, V. S. Ilchenko, M. L. Gorodetsky, L. Hollberg, and A. V. Yarovitsky, Opt. Commun. 158, 305 (1998).
    [CrossRef]
  6. V. V. Vassiliev, S. M. Ilina, and V. L. Velichansky, Appl. Phys. B 76, 521 (2003).
  7. K. Kieu and M. Mansuripur, Opt. Lett. 32, 244 (2007).
    [CrossRef] [PubMed]
  8. B. Sprenger, H. G. L. Schwefel, and L. J. Wang, Opt. Lett. 34, 3370 (2009).
    [CrossRef] [PubMed]
  9. D. R. Hjelme, A. R. Mickelson, and R. G. Beausoleil, IEEE J. Quantum Electron. 27, 352 (1991).
    [CrossRef]
  10. A. B. Matsko, A. A. Savchenkov, N. Yu, and L. Maleki, J. Opt. Soc. Am. B 24, 1324 (2007).
    [CrossRef]

2009 (1)

2007 (2)

2003 (1)

V. V. Vassiliev, S. M. Ilina, and V. L. Velichansky, Appl. Phys. B 76, 521 (2003).

2000 (1)

1998 (1)

V. V. Vassiliev, V. L. Velichansky, V. S. Ilchenko, M. L. Gorodetsky, L. Hollberg, and A. V. Yarovitsky, Opt. Commun. 158, 305 (1998).
[CrossRef]

1994 (1)

1991 (1)

D. R. Hjelme, A. R. Mickelson, and R. G. Beausoleil, IEEE J. Quantum Electron. 27, 352 (1991).
[CrossRef]

1988 (1)

L. Hollberg and M. Ohtsu, Appl. Phys. Lett. 53, 944 (1988).
[CrossRef]

1987 (1)

Beausoleil, R. G.

D. R. Hjelme, A. R. Mickelson, and R. G. Beausoleil, IEEE J. Quantum Electron. 27, 352 (1991).
[CrossRef]

Dahmani, B.

Drullinger, R.

Gorodetsky, M. L.

M. L. Gorodetsky, A. D. Pryamikov, and V. S. Ilchenko, J. Opt. Soc. Am. B 17, 1051 (2000).
[CrossRef]

V. V. Vassiliev, V. L. Velichansky, V. S. Ilchenko, M. L. Gorodetsky, L. Hollberg, and A. V. Yarovitsky, Opt. Commun. 158, 305 (1998).
[CrossRef]

Han¨sch, T. W.

Hemmerich, A.

Hjelme, D. R.

D. R. Hjelme, A. R. Mickelson, and R. G. Beausoleil, IEEE J. Quantum Electron. 27, 352 (1991).
[CrossRef]

Hollberg, L.

V. V. Vassiliev, V. L. Velichansky, V. S. Ilchenko, M. L. Gorodetsky, L. Hollberg, and A. V. Yarovitsky, Opt. Commun. 158, 305 (1998).
[CrossRef]

L. Hollberg and M. Ohtsu, Appl. Phys. Lett. 53, 944 (1988).
[CrossRef]

B. Dahmani, L. Hollberg, and R. Drullinger, Opt. Lett. 12, 876 (1987).
[CrossRef] [PubMed]

Ilchenko, V. S.

M. L. Gorodetsky, A. D. Pryamikov, and V. S. Ilchenko, J. Opt. Soc. Am. B 17, 1051 (2000).
[CrossRef]

V. V. Vassiliev, V. L. Velichansky, V. S. Ilchenko, M. L. Gorodetsky, L. Hollberg, and A. V. Yarovitsky, Opt. Commun. 158, 305 (1998).
[CrossRef]

Ilina, S. M.

V. V. Vassiliev, S. M. Ilina, and V. L. Velichansky, Appl. Phys. B 76, 521 (2003).

Kieu, K.

Maleki, L.

Mansuripur, M.

Matsko, A. B.

Mickelson, A. R.

D. R. Hjelme, A. R. Mickelson, and R. G. Beausoleil, IEEE J. Quantum Electron. 27, 352 (1991).
[CrossRef]

Ohtsu, M.

L. Hollberg and M. Ohtsu, Appl. Phys. Lett. 53, 944 (1988).
[CrossRef]

Pryamikov, A. D.

Savchenkov, A. A.

Schwefel, H. G. L.

Sprenger, B.

Vassiliev, V. V.

V. V. Vassiliev, S. M. Ilina, and V. L. Velichansky, Appl. Phys. B 76, 521 (2003).

V. V. Vassiliev, V. L. Velichansky, V. S. Ilchenko, M. L. Gorodetsky, L. Hollberg, and A. V. Yarovitsky, Opt. Commun. 158, 305 (1998).
[CrossRef]

Velichansky, V. L.

V. V. Vassiliev, S. M. Ilina, and V. L. Velichansky, Appl. Phys. B 76, 521 (2003).

V. V. Vassiliev, V. L. Velichansky, V. S. Ilchenko, M. L. Gorodetsky, L. Hollberg, and A. V. Yarovitsky, Opt. Commun. 158, 305 (1998).
[CrossRef]

Wang, L. J.

Yarovitsky, A. V.

V. V. Vassiliev, V. L. Velichansky, V. S. Ilchenko, M. L. Gorodetsky, L. Hollberg, and A. V. Yarovitsky, Opt. Commun. 158, 305 (1998).
[CrossRef]

Yu, N.

Zimmermann, C.

Appl. Opt. (1)

Appl. Phys. B (1)

V. V. Vassiliev, S. M. Ilina, and V. L. Velichansky, Appl. Phys. B 76, 521 (2003).

Appl. Phys. Lett. (1)

L. Hollberg and M. Ohtsu, Appl. Phys. Lett. 53, 944 (1988).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. R. Hjelme, A. R. Mickelson, and R. G. Beausoleil, IEEE J. Quantum Electron. 27, 352 (1991).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

V. V. Vassiliev, V. L. Velichansky, V. S. Ilchenko, M. L. Gorodetsky, L. Hollberg, and A. V. Yarovitsky, Opt. Commun. 158, 305 (1998).
[CrossRef]

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the experimental setup. Light from the pump laser enters the WGMR through the prism. Part of the light is reflected back to the laser owing to Rayleigh scattering in the resonator. The light exiting the prism is collimated and sent to an optical spectrum analyzer.

Fig. 2
Fig. 2

Single-sided phase-noise spectrum of the rf beat signal generated by two self-injection-locked DFB lasers on a fast photodiode. The solid curve is the fit of the noise using decomposition of terms f l ( l = 1 , , 4 ) . The dashed curve is the fundamental limit of the phase noise determined by the thermodynamic fluctuation of the WGM frequencies. Interestingly, the low-frequency phase noise has f 7 / 2 frequency dependence, similar to the theoretical limit.

Fig. 3
Fig. 3

Frequency spectrum of the rf signal generated by beating two DFB lasers on a fast photodiode. (a) The lasers are free running. The skirts of the line are fitted with 8 MHz Lorentzian envelope. (b) The lasers are self-injection locked. The lineshape is taken with an 18 kHz resolution bandwidth. The line is inhomogeneously broadened due to the frequency drift. The skirts of the line are fitted with 160 Hz Lorentzian envelope.

Fig. 4
Fig. 4

Allan deviation of the rf signal produced by beating two self-injection-locked DFB lasers on a fast photodiode. We used a signal analyzer to measure the short-term stability (open circles) and a frequency counter to measure the long-term stability (solid circles). The solid curve represents the curve calculated using the fitting curve in Fig. 2.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

σ 2 ( τ ) = 2 0 S ν ν 0 2 sin 4 ( π f τ ) ( π f τ ) 2 d f = Δ ν ν 0 1 ν 0 τ .
Δ ν eff L ( f ) d f = 1 2 π [ ra d 2 ] ,
L beat ( f ) = 4 π ν 0 η a P ( 1 + η a ( Δ ν c ) 2 f 2 ) + F k B T ρ R a 2 P 2 2 + RIN ,

Metrics