Abstract

We study nonlinear spectral broadening and supercontinuum generation mechanisms in two-dimensional solid-core photonic bandgap fibers. Using rigorous frequency-domain numerical simulations, we determine how the spectral characteristics are influenced by the strong frequency dependence of the effective area, dispersion, and confinement losses. We also investigate soliton stabilization and the conditions under which efficient nonlinear spectral energy transfer is possible across high attenuation between adjacent bandgaps. Our results provide insight into recent experiments.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Argyros, T. A. Birks, S. G. Leon-Saval, C. M. B. Cordeiro, F. Luan, and P. St. J. Russell, Opt. Express 13, 309 (2005).
    [CrossRef] [PubMed]
  2. V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, Appl. Phys. Lett. 92, 061113 (2008).
    [CrossRef]
  3. V. Pureur, A. Bétourné, G. Bouwmans, L. Bigot, A. Kudlinski, K. Delplace, A. Le Rouge, Y. Quiquempois, and M. Douay, Fiber Integr. Opt. 28, 27 (2009).
    [CrossRef]
  4. J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
    [CrossRef]
  5. A. Fuerbach, P. Steinvurzel, J. A. Bolger, A. Nulsen, and B. J. Eggleton, Opt. Lett. 30, 830 (2005).
    [CrossRef] [PubMed]
  6. B. Kibler, T. Martynkien, M. Szpulak, C. Finot, J. Fatome, J. Wojcik, W. Urbanczyk, and S. Wabnitz, Opt. Express 17, 10393 (2009).
    [CrossRef] [PubMed]
  7. A. Cerqueira, C. M. B. Cordeiro, F. Biancalana, P. J. Roberts, H. E. Hernandez-Figueroa, and C. H. Brito Cruz, Opt. Lett. 33, 2080 (2008).
    [CrossRef]
  8. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. de Sterke, and L. C. Botten, J. Opt. Soc. Am. B 19, 2322 (2002).
    [CrossRef]
  9. P. D. Rasmussen, J. Laegsgaard, and O. Bang, Opt. Express 16, 4059 (2008).
    [CrossRef] [PubMed]
  10. N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, Opt. Express 11, 1243 (2003).
    [CrossRef] [PubMed]
  11. J. Laegsgaard, Opt. Express 15, 16110 (2007).
    [CrossRef] [PubMed]
  12. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
  13. B. Kibler, J. M. Dudley, and S. Coen, Appl. Phys. B 81, 337 (2005).
    [CrossRef]
  14. A. Bétourné, A. Kudlinski, G. Bouwmans, O. Vanvincq, A. Mussot, and Y. Quiquempois, Opt. Lett. 34, 3083 (2009).
    [CrossRef] [PubMed]

2009 (3)

2008 (3)

2007 (1)

2006 (1)

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

2005 (3)

2003 (1)

2002 (1)

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

Argyros, A.

Bang, O.

Bétourné, A.

A. Bétourné, A. Kudlinski, G. Bouwmans, O. Vanvincq, A. Mussot, and Y. Quiquempois, Opt. Lett. 34, 3083 (2009).
[CrossRef] [PubMed]

V. Pureur, A. Bétourné, G. Bouwmans, L. Bigot, A. Kudlinski, K. Delplace, A. Le Rouge, Y. Quiquempois, and M. Douay, Fiber Integr. Opt. 28, 27 (2009).
[CrossRef]

Biancalana, F.

Bigot, L.

V. Pureur, A. Bétourné, G. Bouwmans, L. Bigot, A. Kudlinski, K. Delplace, A. Le Rouge, Y. Quiquempois, and M. Douay, Fiber Integr. Opt. 28, 27 (2009).
[CrossRef]

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, Appl. Phys. Lett. 92, 061113 (2008).
[CrossRef]

Birks, T. A.

Bolger, J. A.

Botten, L. C.

Bouwmans, G.

V. Pureur, A. Bétourné, G. Bouwmans, L. Bigot, A. Kudlinski, K. Delplace, A. Le Rouge, Y. Quiquempois, and M. Douay, Fiber Integr. Opt. 28, 27 (2009).
[CrossRef]

A. Bétourné, A. Kudlinski, G. Bouwmans, O. Vanvincq, A. Mussot, and Y. Quiquempois, Opt. Lett. 34, 3083 (2009).
[CrossRef] [PubMed]

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, Appl. Phys. Lett. 92, 061113 (2008).
[CrossRef]

Brito Cruz, C. H.

Cerqueira, A.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

B. Kibler, J. M. Dudley, and S. Coen, Appl. Phys. B 81, 337 (2005).
[CrossRef]

Cordeiro, C. M. B.

de Sterke, C. M.

Delplace, K.

V. Pureur, A. Bétourné, G. Bouwmans, L. Bigot, A. Kudlinski, K. Delplace, A. Le Rouge, Y. Quiquempois, and M. Douay, Fiber Integr. Opt. 28, 27 (2009).
[CrossRef]

Douay, M.

V. Pureur, A. Bétourné, G. Bouwmans, L. Bigot, A. Kudlinski, K. Delplace, A. Le Rouge, Y. Quiquempois, and M. Douay, Fiber Integr. Opt. 28, 27 (2009).
[CrossRef]

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, Appl. Phys. Lett. 92, 061113 (2008).
[CrossRef]

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

B. Kibler, J. M. Dudley, and S. Coen, Appl. Phys. B 81, 337 (2005).
[CrossRef]

Dunn, S. C.

Eggleton, B. J.

Fatome, J.

Finot, C.

Fuerbach, A.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Hernandez-Figueroa, H. E.

Jaouen, Y.

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, Appl. Phys. Lett. 92, 061113 (2008).
[CrossRef]

Kibler, B.

Kudlinski, A.

A. Bétourné, A. Kudlinski, G. Bouwmans, O. Vanvincq, A. Mussot, and Y. Quiquempois, Opt. Lett. 34, 3083 (2009).
[CrossRef] [PubMed]

V. Pureur, A. Bétourné, G. Bouwmans, L. Bigot, A. Kudlinski, K. Delplace, A. Le Rouge, Y. Quiquempois, and M. Douay, Fiber Integr. Opt. 28, 27 (2009).
[CrossRef]

Kuhlmey, B. T.

Laegsgaard, J.

Le Rouge, A.

V. Pureur, A. Bétourné, G. Bouwmans, L. Bigot, A. Kudlinski, K. Delplace, A. Le Rouge, Y. Quiquempois, and M. Douay, Fiber Integr. Opt. 28, 27 (2009).
[CrossRef]

Leon-Saval, S. G.

Litchinitser, N. M.

Luan, F.

Martynkien, T.

Maystre, D.

McPhedran, R. C.

Mussot, A.

Nulsen, A.

Pureur, V.

V. Pureur, A. Bétourné, G. Bouwmans, L. Bigot, A. Kudlinski, K. Delplace, A. Le Rouge, Y. Quiquempois, and M. Douay, Fiber Integr. Opt. 28, 27 (2009).
[CrossRef]

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, Appl. Phys. Lett. 92, 061113 (2008).
[CrossRef]

Quiquempois, Y.

V. Pureur, A. Bétourné, G. Bouwmans, L. Bigot, A. Kudlinski, K. Delplace, A. Le Rouge, Y. Quiquempois, and M. Douay, Fiber Integr. Opt. 28, 27 (2009).
[CrossRef]

A. Bétourné, A. Kudlinski, G. Bouwmans, O. Vanvincq, A. Mussot, and Y. Quiquempois, Opt. Lett. 34, 3083 (2009).
[CrossRef] [PubMed]

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, Appl. Phys. Lett. 92, 061113 (2008).
[CrossRef]

Rasmussen, P. D.

Renversez, G.

Roberts, P. J.

Russell, P. St. J.

Steinvurzel, P.

Szpulak, M.

Urbanczyk, W.

Usner, B.

Vanvincq, O.

Wabnitz, S.

White, T. P.

Wojcik, J.

Appl. Phys. B (1)

B. Kibler, J. M. Dudley, and S. Coen, Appl. Phys. B 81, 337 (2005).
[CrossRef]

Appl. Phys. Lett. (1)

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, Appl. Phys. Lett. 92, 061113 (2008).
[CrossRef]

Fiber Integr. Opt. (1)

V. Pureur, A. Bétourné, G. Bouwmans, L. Bigot, A. Kudlinski, K. Delplace, A. Le Rouge, Y. Quiquempois, and M. Douay, Fiber Integr. Opt. 28, 27 (2009).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (5)

Opt. Lett. (3)

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Top axes: loss (red, left) and GVD (black, right) as a function of normalized frequency V. Bottom axes: effective area (blue, left) and nonlinear parameter γ (green, right). The dashed curves show results for an index-guiding PCF.

Fig. 2
Fig. 2

(a) PBG1 characteristics compared with SC simulations pumping at (b) 1290 nm and (c) 1550 nm . Results show (i) fully realistic modeling of frequency-dependent effective area A eff ( ω ) and loss α ( ω ) (red solid curve, seven rings); (ii) approximation with frequency-dependent A eff ( ω ) but no loss, i.e., α ( ω ) = 0 (green short-dashed curve); and (iii) approximation with constant A eff ( ω 0 ) and frequency- dependent loss α ( ω ) (blue long-dashed curve).

Fig. 3
Fig. 3

(a) Output spectra after 50 cm propagation for pump wavelengths as shown. (b) SC evolution in PBG2 over fiber length of 1 m with α = 0 (left) and simulated SC evolution in PBG2 and PBG3 over a propagation distance of 5 mm ( λ pump = 830 nm , P in = 100 kW ) (right). (c) Output spectrogram correlating DW (A) and solitons (B) and (C).

Metrics