Abstract

A full-scale phase demodulation approach based on two quadrature power ratios is proposed to perform photonic instantaneous frequency measurement (P-IFM). In the proposed approach, a delay-line interferometer (DLI) and two laser sources are used. The wavelengths of two lasers are located at the peak point of and at the 3dB point of the comb filtering response of the DLI. Therefore, at the two wavelengths, a cosine-shape and a sine-shape filtering response are formed to process the +1st or 1st order sidebands, which are generated by externally modulating the light waves of the two lasers with a microwave signal. After being filtered, two quadrature power ratios, cosine-shaped and sine-shaped responses, are obtained at the two wavelengths via power detection and power comparison. The phase term induced by the frequency is then demodulated from the two power ratios without ambiguity within the full-scale range of 02π, the so-called full-scale phase demodulation, which has been verified in a proof-of-concept experiment. Unlike a half-scale range of 0π, such a full-scale range of the proposed approach makes it a potential solution to design parallel or cascaded configurations to P-IFM to enhance the measurement range and the resolution.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. V. T. Nguyen and D. B. Hunter, IEEE Photonics Technol. Lett. 18, 1188 (2006).
    [CrossRef]
  2. J. Li, S. Fu, K. Xu, J. Q. Zhou, P. Shum, J. Wu, and J. Lin, Opt. Lett. 34, 743 (2009).
    [CrossRef] [PubMed]
  3. M. Attygalle and D. B. Hunter, IEEE Photonics Technol. Lett. 21, 206 (2009).
    [CrossRef]
  4. J. Zhou, S. Fu, P. P. Shum, S. Aditya, L. Xia, J. Li, X. Sun, and K. Xu, Opt. Express 17, 7217 (2009).
    [CrossRef] [PubMed]
  5. X. Zou, S. Pan, and J. P. Yao, J. Lightwave Technol. 27, 5314 (2009).
    [CrossRef]
  6. H. Emami, N. Sarkhosh, L. A. Bui, and A. Mitchell, Opt. Express 16, 13707 (2008).
    [CrossRef] [PubMed]
  7. L. A. Bui, M. D. Pelusi, T. D. Vo, N. Sarkhosh, H. Emami, B. J. Eggleton, and A. Mitchell, Opt. Express 17, 22983(2009).
    [CrossRef]
  8. H. Chi, X. Zou, and J. P. Yao, IEEE Photonics Technol. Lett. 20, 1249 (2008).
    [CrossRef]
  9. X. Zou, H. Chi, and J. P. Yao, IEEE Trans. Microwave Theory Tech. 57, 505 (2009).
    [CrossRef]
  10. M. V. Drummond, P. Monteiro, and R. N. Nogueira, Opt. Express 17, 5433 (2009).
    [CrossRef] [PubMed]
  11. Z. Li, B. Yang, H. Chi, X. Zhang, S. Zheng, and X. Jin, Opt. Commun. 283, 396 (2010).
    [CrossRef]
  12. T. Mengual, B. Vidal, and J. Marti, Opt. Commun. 283, 2676 (2010).
  13. L. V. T. Nguyen, IEEE Photonics Technol. Lett. 21, 642 (2009).
    [CrossRef]
  14. W. Wang, R. L. Davis, T. J. Jung, R. Lodenkamper, L. J. Lembo, J. C. Brock, and M. C. Wu, IEEE Trans. Microwave Theory Tech. 49, 1996 (2001).
    [CrossRef]
  15. S. T. Winnall, A. C. Lindsay, M. W. Austin, J. Canning, and A. Mitchell, IEEE Trans. Microwave Theory Tech. 54, 868 (2006).
    [CrossRef]
  16. F. A. Volkening, “Photonic channelized RF receiver employing dense wavelength division multiplexing,” U.S. patent 7,245,833 (17 July 2007).
  17. X. Zou, W. Pan, B. Luo, and L. Yan, Opt. Lett. 35, 438 (2010).
    [CrossRef] [PubMed]
  18. J. B. Tsui, Microwave Receivers With Electronic Warfare Applications (Wiley, 1986), Chap. 6.

2010 (2)

Z. Li, B. Yang, H. Chi, X. Zhang, S. Zheng, and X. Jin, Opt. Commun. 283, 396 (2010).
[CrossRef]

X. Zou, W. Pan, B. Luo, and L. Yan, Opt. Lett. 35, 438 (2010).
[CrossRef] [PubMed]

2009 (8)

2008 (2)

H. Chi, X. Zou, and J. P. Yao, IEEE Photonics Technol. Lett. 20, 1249 (2008).
[CrossRef]

H. Emami, N. Sarkhosh, L. A. Bui, and A. Mitchell, Opt. Express 16, 13707 (2008).
[CrossRef] [PubMed]

2006 (2)

L. V. T. Nguyen and D. B. Hunter, IEEE Photonics Technol. Lett. 18, 1188 (2006).
[CrossRef]

S. T. Winnall, A. C. Lindsay, M. W. Austin, J. Canning, and A. Mitchell, IEEE Trans. Microwave Theory Tech. 54, 868 (2006).
[CrossRef]

2001 (1)

W. Wang, R. L. Davis, T. J. Jung, R. Lodenkamper, L. J. Lembo, J. C. Brock, and M. C. Wu, IEEE Trans. Microwave Theory Tech. 49, 1996 (2001).
[CrossRef]

Aditya, S.

Attygalle, M.

M. Attygalle and D. B. Hunter, IEEE Photonics Technol. Lett. 21, 206 (2009).
[CrossRef]

Austin, M. W.

S. T. Winnall, A. C. Lindsay, M. W. Austin, J. Canning, and A. Mitchell, IEEE Trans. Microwave Theory Tech. 54, 868 (2006).
[CrossRef]

Brock, J. C.

W. Wang, R. L. Davis, T. J. Jung, R. Lodenkamper, L. J. Lembo, J. C. Brock, and M. C. Wu, IEEE Trans. Microwave Theory Tech. 49, 1996 (2001).
[CrossRef]

Bui, L. A.

Canning, J.

S. T. Winnall, A. C. Lindsay, M. W. Austin, J. Canning, and A. Mitchell, IEEE Trans. Microwave Theory Tech. 54, 868 (2006).
[CrossRef]

Chi, H.

Z. Li, B. Yang, H. Chi, X. Zhang, S. Zheng, and X. Jin, Opt. Commun. 283, 396 (2010).
[CrossRef]

X. Zou, H. Chi, and J. P. Yao, IEEE Trans. Microwave Theory Tech. 57, 505 (2009).
[CrossRef]

H. Chi, X. Zou, and J. P. Yao, IEEE Photonics Technol. Lett. 20, 1249 (2008).
[CrossRef]

Davis, R. L.

W. Wang, R. L. Davis, T. J. Jung, R. Lodenkamper, L. J. Lembo, J. C. Brock, and M. C. Wu, IEEE Trans. Microwave Theory Tech. 49, 1996 (2001).
[CrossRef]

Drummond, M. V.

Eggleton, B. J.

Emami, H.

Fu, S.

Hunter, D. B.

M. Attygalle and D. B. Hunter, IEEE Photonics Technol. Lett. 21, 206 (2009).
[CrossRef]

L. V. T. Nguyen and D. B. Hunter, IEEE Photonics Technol. Lett. 18, 1188 (2006).
[CrossRef]

Jin, X.

Z. Li, B. Yang, H. Chi, X. Zhang, S. Zheng, and X. Jin, Opt. Commun. 283, 396 (2010).
[CrossRef]

Jung, T. J.

W. Wang, R. L. Davis, T. J. Jung, R. Lodenkamper, L. J. Lembo, J. C. Brock, and M. C. Wu, IEEE Trans. Microwave Theory Tech. 49, 1996 (2001).
[CrossRef]

Lembo, L. J.

W. Wang, R. L. Davis, T. J. Jung, R. Lodenkamper, L. J. Lembo, J. C. Brock, and M. C. Wu, IEEE Trans. Microwave Theory Tech. 49, 1996 (2001).
[CrossRef]

Li, J.

Li, Z.

Z. Li, B. Yang, H. Chi, X. Zhang, S. Zheng, and X. Jin, Opt. Commun. 283, 396 (2010).
[CrossRef]

Lin, J.

Lindsay, A. C.

S. T. Winnall, A. C. Lindsay, M. W. Austin, J. Canning, and A. Mitchell, IEEE Trans. Microwave Theory Tech. 54, 868 (2006).
[CrossRef]

Lodenkamper, R.

W. Wang, R. L. Davis, T. J. Jung, R. Lodenkamper, L. J. Lembo, J. C. Brock, and M. C. Wu, IEEE Trans. Microwave Theory Tech. 49, 1996 (2001).
[CrossRef]

Luo, B.

Marti, J.

T. Mengual, B. Vidal, and J. Marti, Opt. Commun. 283, 2676 (2010).

Mengual, T.

T. Mengual, B. Vidal, and J. Marti, Opt. Commun. 283, 2676 (2010).

Mitchell, A.

Monteiro, P.

Nguyen, L. V. T.

L. V. T. Nguyen, IEEE Photonics Technol. Lett. 21, 642 (2009).
[CrossRef]

L. V. T. Nguyen and D. B. Hunter, IEEE Photonics Technol. Lett. 18, 1188 (2006).
[CrossRef]

Nogueira, R. N.

Pan, S.

Pan, W.

Pelusi, M. D.

Sarkhosh, N.

Shum, P.

Shum, P. P.

Sun, X.

Tsui, J. B.

J. B. Tsui, Microwave Receivers With Electronic Warfare Applications (Wiley, 1986), Chap. 6.

Vidal, B.

T. Mengual, B. Vidal, and J. Marti, Opt. Commun. 283, 2676 (2010).

Vo, T. D.

Volkening, F. A.

F. A. Volkening, “Photonic channelized RF receiver employing dense wavelength division multiplexing,” U.S. patent 7,245,833 (17 July 2007).

Wang, W.

W. Wang, R. L. Davis, T. J. Jung, R. Lodenkamper, L. J. Lembo, J. C. Brock, and M. C. Wu, IEEE Trans. Microwave Theory Tech. 49, 1996 (2001).
[CrossRef]

Winnall, S. T.

S. T. Winnall, A. C. Lindsay, M. W. Austin, J. Canning, and A. Mitchell, IEEE Trans. Microwave Theory Tech. 54, 868 (2006).
[CrossRef]

Wu, J.

Wu, M. C.

W. Wang, R. L. Davis, T. J. Jung, R. Lodenkamper, L. J. Lembo, J. C. Brock, and M. C. Wu, IEEE Trans. Microwave Theory Tech. 49, 1996 (2001).
[CrossRef]

Xia, L.

Xu, K.

Yan, L.

Yang, B.

Z. Li, B. Yang, H. Chi, X. Zhang, S. Zheng, and X. Jin, Opt. Commun. 283, 396 (2010).
[CrossRef]

Yao, J. P.

X. Zou, H. Chi, and J. P. Yao, IEEE Trans. Microwave Theory Tech. 57, 505 (2009).
[CrossRef]

X. Zou, S. Pan, and J. P. Yao, J. Lightwave Technol. 27, 5314 (2009).
[CrossRef]

H. Chi, X. Zou, and J. P. Yao, IEEE Photonics Technol. Lett. 20, 1249 (2008).
[CrossRef]

Zhang, X.

Z. Li, B. Yang, H. Chi, X. Zhang, S. Zheng, and X. Jin, Opt. Commun. 283, 396 (2010).
[CrossRef]

Zheng, S.

Z. Li, B. Yang, H. Chi, X. Zhang, S. Zheng, and X. Jin, Opt. Commun. 283, 396 (2010).
[CrossRef]

Zhou, J.

Zhou, J. Q.

Zou, X.

X. Zou, W. Pan, B. Luo, and L. Yan, Opt. Lett. 35, 438 (2010).
[CrossRef] [PubMed]

X. Zou, H. Chi, and J. P. Yao, IEEE Trans. Microwave Theory Tech. 57, 505 (2009).
[CrossRef]

X. Zou, S. Pan, and J. P. Yao, J. Lightwave Technol. 27, 5314 (2009).
[CrossRef]

H. Chi, X. Zou, and J. P. Yao, IEEE Photonics Technol. Lett. 20, 1249 (2008).
[CrossRef]

IEEE Photonics Technol. Lett. (4)

L. V. T. Nguyen and D. B. Hunter, IEEE Photonics Technol. Lett. 18, 1188 (2006).
[CrossRef]

M. Attygalle and D. B. Hunter, IEEE Photonics Technol. Lett. 21, 206 (2009).
[CrossRef]

H. Chi, X. Zou, and J. P. Yao, IEEE Photonics Technol. Lett. 20, 1249 (2008).
[CrossRef]

L. V. T. Nguyen, IEEE Photonics Technol. Lett. 21, 642 (2009).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (3)

W. Wang, R. L. Davis, T. J. Jung, R. Lodenkamper, L. J. Lembo, J. C. Brock, and M. C. Wu, IEEE Trans. Microwave Theory Tech. 49, 1996 (2001).
[CrossRef]

S. T. Winnall, A. C. Lindsay, M. W. Austin, J. Canning, and A. Mitchell, IEEE Trans. Microwave Theory Tech. 54, 868 (2006).
[CrossRef]

X. Zou, H. Chi, and J. P. Yao, IEEE Trans. Microwave Theory Tech. 57, 505 (2009).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Commun. (1)

Z. Li, B. Yang, H. Chi, X. Zhang, S. Zheng, and X. Jin, Opt. Commun. 283, 396 (2010).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Other (3)

J. B. Tsui, Microwave Receivers With Electronic Warfare Applications (Wiley, 1986), Chap. 6.

T. Mengual, B. Vidal, and J. Marti, Opt. Commun. 283, 2676 (2010).

F. A. Volkening, “Photonic channelized RF receiver employing dense wavelength division multiplexing,” U.S. patent 7,245,833 (17 July 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the proposed phase demodulation approach: LD, laser diode; DLI, delay-line interferometer; WDM, wavelength division multiplexer; PD, photodetector.

Fig. 2
Fig. 2

(a) Comb-filtering response and the location of the two wavelengths. The relationship between the power ratios and the frequency-dependent phase terms at the two wavelengths: (b) λ 1 and (c) λ 2 .

Fig. 3
Fig. 3

Measured comb-filtering response with an FSR of 44 GHz and the measured spectra of the tunable laser when its wavelength is adjusted to be 1551.0 or 1552.33 nm .

Fig. 4
Fig. 4

Experimental results of (a) two quad rature power ratios at the two wavelengths and (b) the demodulated phase terms and resulting measurement errors (solid lines, theoretical values; circles or squares, experimental results).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R 1 = [ 1 + cos ( 2 π f τ ) ] / 2 , R 2 = [ 1 + sin ( 2 π f τ ) ] / 2.

Metrics