Abstract

We demonstrate the first cw two-photon absorption laser-induced stimulated emission. The 71S061P1 transition in mercury at a 1014nm wavelength is used, and selective lasing of different isotopes is observed.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Hebert, R. Wannemacher, W. Lenth, and R. M. Macfarlane, Appl. Phys. Lett. 57, 1727 (1990).
    [CrossRef]
  2. J. Bewersdorf, R. Pick, and S. W. Hell, Opt. Lett. 23, 655 (1998).
    [CrossRef]
  3. J. H. Strickler and W. W. Webb, Opt. Lett. 16, 1780 (1991).
    [CrossRef] [PubMed]
  4. J. E. M. Goldsmith, J. Opt. Soc. Am. B 6, 1979 (1989).
    [CrossRef]
  5. J. Amorim, G. Baravian, and J. Jolly, J. Phys. D 33, R51 (2000).
    [CrossRef]
  6. N. Omenetto, O. I. Matveev, W. Resto, R. Badini, B. W. Smith, and J. D. Winefordner, Appl. Phys. B 58, 303 (1994).
    [CrossRef]
  7. M. Scheid, D. Kolbe, F. Markert, T. W. Hänsch, and J. Walz, Opt. Express 17, 11274 (2009).
    [CrossRef] [PubMed]
  8. M. Scheid, F. Markert, J. Walz, J. Wang, M. Kirchner, and T. W. Hänsch, Opt. Lett. 32, 955 (2007).
    [CrossRef] [PubMed]
  9. K. S. E. Eikema, J. Walz, and T. W. Hänsch, Phys. Rev. Lett. 83, 3828 (1999).
    [CrossRef]
  10. E. C. Benck and J. T. Dakin, J. Opt. Soc. Am. B 6, 11 (1989).
    [CrossRef]
  11. K. L. Menningen and J. E. Lawler, J. Appl. Phys. 88, 3190 (2000).
    [CrossRef]
  12. M. G. Zadnik, S. Specht, and F. Begemann, Int. J. Mass Spectrom. Ion Proc. 89, 103 (1989).
    [CrossRef]
  13. T. Beyer, D. Kolbe, M. Scheid, F. Markert, and J. Walz, Phys. Rev. A 80, 053414 (2009).
    [CrossRef]
  14. A. V. Smith, W. J. Alford, and G. R. Hadley, J. Opt. Soc. Am. B 5, 1503 (1988).
    [CrossRef]

2009 (2)

M. Scheid, D. Kolbe, F. Markert, T. W. Hänsch, and J. Walz, Opt. Express 17, 11274 (2009).
[CrossRef] [PubMed]

T. Beyer, D. Kolbe, M. Scheid, F. Markert, and J. Walz, Phys. Rev. A 80, 053414 (2009).
[CrossRef]

2007 (1)

2000 (2)

J. Amorim, G. Baravian, and J. Jolly, J. Phys. D 33, R51 (2000).
[CrossRef]

K. L. Menningen and J. E. Lawler, J. Appl. Phys. 88, 3190 (2000).
[CrossRef]

1999 (1)

K. S. E. Eikema, J. Walz, and T. W. Hänsch, Phys. Rev. Lett. 83, 3828 (1999).
[CrossRef]

1998 (1)

1994 (1)

N. Omenetto, O. I. Matveev, W. Resto, R. Badini, B. W. Smith, and J. D. Winefordner, Appl. Phys. B 58, 303 (1994).
[CrossRef]

1991 (1)

1990 (1)

T. Hebert, R. Wannemacher, W. Lenth, and R. M. Macfarlane, Appl. Phys. Lett. 57, 1727 (1990).
[CrossRef]

1989 (3)

1988 (1)

Alford, W. J.

Amorim, J.

J. Amorim, G. Baravian, and J. Jolly, J. Phys. D 33, R51 (2000).
[CrossRef]

Badini, R.

N. Omenetto, O. I. Matveev, W. Resto, R. Badini, B. W. Smith, and J. D. Winefordner, Appl. Phys. B 58, 303 (1994).
[CrossRef]

Baravian, G.

J. Amorim, G. Baravian, and J. Jolly, J. Phys. D 33, R51 (2000).
[CrossRef]

Begemann, F.

M. G. Zadnik, S. Specht, and F. Begemann, Int. J. Mass Spectrom. Ion Proc. 89, 103 (1989).
[CrossRef]

Benck, E. C.

Bewersdorf, J.

Beyer, T.

T. Beyer, D. Kolbe, M. Scheid, F. Markert, and J. Walz, Phys. Rev. A 80, 053414 (2009).
[CrossRef]

Dakin, J. T.

Eikema, K. S. E.

K. S. E. Eikema, J. Walz, and T. W. Hänsch, Phys. Rev. Lett. 83, 3828 (1999).
[CrossRef]

Goldsmith, J. E. M.

Hadley, G. R.

Hänsch, T. W.

Hebert, T.

T. Hebert, R. Wannemacher, W. Lenth, and R. M. Macfarlane, Appl. Phys. Lett. 57, 1727 (1990).
[CrossRef]

Hell, S. W.

Jolly, J.

J. Amorim, G. Baravian, and J. Jolly, J. Phys. D 33, R51 (2000).
[CrossRef]

Kirchner, M.

Kolbe, D.

M. Scheid, D. Kolbe, F. Markert, T. W. Hänsch, and J. Walz, Opt. Express 17, 11274 (2009).
[CrossRef] [PubMed]

T. Beyer, D. Kolbe, M. Scheid, F. Markert, and J. Walz, Phys. Rev. A 80, 053414 (2009).
[CrossRef]

Lawler, J. E.

K. L. Menningen and J. E. Lawler, J. Appl. Phys. 88, 3190 (2000).
[CrossRef]

Lenth, W.

T. Hebert, R. Wannemacher, W. Lenth, and R. M. Macfarlane, Appl. Phys. Lett. 57, 1727 (1990).
[CrossRef]

Macfarlane, R. M.

T. Hebert, R. Wannemacher, W. Lenth, and R. M. Macfarlane, Appl. Phys. Lett. 57, 1727 (1990).
[CrossRef]

Markert, F.

Matveev, O. I.

N. Omenetto, O. I. Matveev, W. Resto, R. Badini, B. W. Smith, and J. D. Winefordner, Appl. Phys. B 58, 303 (1994).
[CrossRef]

Menningen, K. L.

K. L. Menningen and J. E. Lawler, J. Appl. Phys. 88, 3190 (2000).
[CrossRef]

Omenetto, N.

N. Omenetto, O. I. Matveev, W. Resto, R. Badini, B. W. Smith, and J. D. Winefordner, Appl. Phys. B 58, 303 (1994).
[CrossRef]

Pick, R.

Resto, W.

N. Omenetto, O. I. Matveev, W. Resto, R. Badini, B. W. Smith, and J. D. Winefordner, Appl. Phys. B 58, 303 (1994).
[CrossRef]

Scheid, M.

Smith, A. V.

Smith, B. W.

N. Omenetto, O. I. Matveev, W. Resto, R. Badini, B. W. Smith, and J. D. Winefordner, Appl. Phys. B 58, 303 (1994).
[CrossRef]

Specht, S.

M. G. Zadnik, S. Specht, and F. Begemann, Int. J. Mass Spectrom. Ion Proc. 89, 103 (1989).
[CrossRef]

Strickler, J. H.

Walz, J.

Wang, J.

Wannemacher, R.

T. Hebert, R. Wannemacher, W. Lenth, and R. M. Macfarlane, Appl. Phys. Lett. 57, 1727 (1990).
[CrossRef]

Webb, W. W.

Winefordner, J. D.

N. Omenetto, O. I. Matveev, W. Resto, R. Badini, B. W. Smith, and J. D. Winefordner, Appl. Phys. B 58, 303 (1994).
[CrossRef]

Zadnik, M. G.

M. G. Zadnik, S. Specht, and F. Begemann, Int. J. Mass Spectrom. Ion Proc. 89, 103 (1989).
[CrossRef]

Appl. Phys. B (1)

N. Omenetto, O. I. Matveev, W. Resto, R. Badini, B. W. Smith, and J. D. Winefordner, Appl. Phys. B 58, 303 (1994).
[CrossRef]

Appl. Phys. Lett. (1)

T. Hebert, R. Wannemacher, W. Lenth, and R. M. Macfarlane, Appl. Phys. Lett. 57, 1727 (1990).
[CrossRef]

Int. J. Mass Spectrom. Ion Proc. (1)

M. G. Zadnik, S. Specht, and F. Begemann, Int. J. Mass Spectrom. Ion Proc. 89, 103 (1989).
[CrossRef]

J. Appl. Phys. (1)

K. L. Menningen and J. E. Lawler, J. Appl. Phys. 88, 3190 (2000).
[CrossRef]

J. Opt. Soc. Am. B (3)

J. Phys. D (1)

J. Amorim, G. Baravian, and J. Jolly, J. Phys. D 33, R51 (2000).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. A (1)

T. Beyer, D. Kolbe, M. Scheid, F. Markert, and J. Walz, Phys. Rev. A 80, 053414 (2009).
[CrossRef]

Phys. Rev. Lett. (1)

K. S. E. Eikema, J. Walz, and T. W. Hänsch, Phys. Rev. Lett. 83, 3828 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Energy-level diagram of mercury. The UV laser ( 254 nm ) is tuned close to the 6 1 S 0 6 3 P 1 resonance; the blue laser ( 408 nm ) establishes the two-photon resonance with the 7 1 S 0 state. Lasing is observed at the 7 1 S 0 6 1 P 1 transition ( 1014 nm ). The green laser ( 545 nm ) can be used in ad dition to produce radiation at Lyman-α ( 121.56 nm ) by four-wave-mixing.

Fig. 2
Fig. 2

Threshold behavior of CTALISE. The IR power emitted in the forward direction is shown as a function of UV pump power at the two-photon resonance of Hg 202 ( + ) and of the Hg 204 isotope (×). The insets show scans with the same span across the two-photon resonance in the three regimes: (a) fluorescence, (b) threshold, and (c) lasing.

Fig. 3
Fig. 3

IR powers at different buffer gas pressures. Two different pumping schemes are compared: two-photon resonant to the Hg 202 (+) and double one-photon excitation of the Hg 202 ( □ ). Points with arrows were recorded at the lowest buffer gas pressure possible ( < 10 3 mbar ).

Fig. 4
Fig. 4

(a) Beam profile of spontaneous lasing in mercury. (b) Overlapped beam after a Michelson interferometer shows coherence.

Fig. 5
Fig. 5

Four-wave-mixing power in presence of CTALISE. IR powers ( □ ) and four-wave-mixing signals (+) are shown at different UV powers. The linear fit through the four-wave mixing data shows that CTALISE is not a limiting process.

Metrics