Abstract

We introduce half-wave and quarter-wave retarders based on the dispersion properties of guided-mode resonance elements. We design the wave plates using numerical electromagnetic models joined with the particle swarm optimization method. The wave plates operate in reflection. We provide computed results for reflectance and phase in the telecommunication spectral region near 1.55μm wavelength. A surface-relief grating etched in glass and overcoated with silicon yields a half-wave plate with nearly equal amplitudes of the TE and TM polarization components and π phase difference across a bandwidth exceeding 50nm. Wider operational bandwidths are obtainable with more complex designs involving glass substrates and mixed silicon/hafnium dioxide resonant gratings. The results indicate a potential new approach to fashion optical retarders.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Hecht, Optics, 4th ed. (Addison-Wesley, 2002).
  2. R. Magnusson and D. Shin, in Encyclopedia of Physical Science and Technology, 3rd ed. (Academic, 2002), Vol. 4, pp. 421–440.
  3. P. Vincent and M. Neviere, Appl. Phys. 20, 345 (1979).
    [CrossRef]
  4. L. Mashev and E. Popov, Opt. Comm. 55, 377 (1985).
    [CrossRef]
  5. I. A. Avrutsky and V. A. Sychugov, J. Mod. Opt. 36, 1527 (1989).
    [CrossRef]
  6. G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, Sov. J. Quantum Electron. 15, 886 (1985).
    [CrossRef]
  7. S. S. Wang and R. Magnusson, Appl. Opt. 32, 2606 (1993).
    [CrossRef] [PubMed]
  8. Y. Ding and R. Magnusson, Opt. Express 12, 5661 (2004).
    [CrossRef] [PubMed]
  9. R. Magnusson and Y. Ding, “Resonant leaky-mode optical devices and associated methods,” U.S. patent number 7,689,086 (March 30, 2010).
  10. R. Magnusson, M. Shokooh-Saremi, and X. Wang, Opt. Express 18, 108 (2010).
    [CrossRef] [PubMed]
  11. I. Vartiainen, J. Tervo, and M. Kuittinen, Opt. Lett. 34, 1648 (2009).
    [CrossRef] [PubMed]
  12. R. Eberhart and J. Kennedy, in Proceedings of IEEE Conference on Neural Networks (IEEE, 1995), pp. 1942–1948.
  13. M. Shokooh-Saremi and R. Magnusson, Opt. Lett. 32, 894 (2007).
    [CrossRef] [PubMed]
  14. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, J. Opt. Soc. Am. A 12, 1077 (1995).
    [CrossRef]
  15. W. Yu, K. Satoh, H. Kikuta, T. Konishi, and T. Yotsuya, Jpn. J. Appl. Phys. 43, L439 (2004).
    [CrossRef]

2010 (1)

2009 (1)

2007 (1)

2004 (2)

Y. Ding and R. Magnusson, Opt. Express 12, 5661 (2004).
[CrossRef] [PubMed]

W. Yu, K. Satoh, H. Kikuta, T. Konishi, and T. Yotsuya, Jpn. J. Appl. Phys. 43, L439 (2004).
[CrossRef]

1995 (1)

1993 (1)

1989 (1)

I. A. Avrutsky and V. A. Sychugov, J. Mod. Opt. 36, 1527 (1989).
[CrossRef]

1985 (2)

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, Sov. J. Quantum Electron. 15, 886 (1985).
[CrossRef]

L. Mashev and E. Popov, Opt. Comm. 55, 377 (1985).
[CrossRef]

1979 (1)

P. Vincent and M. Neviere, Appl. Phys. 20, 345 (1979).
[CrossRef]

Avrutsky, I. A.

I. A. Avrutsky and V. A. Sychugov, J. Mod. Opt. 36, 1527 (1989).
[CrossRef]

Ding, Y.

Y. Ding and R. Magnusson, Opt. Express 12, 5661 (2004).
[CrossRef] [PubMed]

R. Magnusson and Y. Ding, “Resonant leaky-mode optical devices and associated methods,” U.S. patent number 7,689,086 (March 30, 2010).

Eberhart, R.

R. Eberhart and J. Kennedy, in Proceedings of IEEE Conference on Neural Networks (IEEE, 1995), pp. 1942–1948.

Gaylord, T. K.

Golubenko, G. A.

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, Sov. J. Quantum Electron. 15, 886 (1985).
[CrossRef]

Grann, E. B.

Hecht, E.

E. Hecht, Optics, 4th ed. (Addison-Wesley, 2002).

Kennedy, J.

R. Eberhart and J. Kennedy, in Proceedings of IEEE Conference on Neural Networks (IEEE, 1995), pp. 1942–1948.

Kikuta, H.

W. Yu, K. Satoh, H. Kikuta, T. Konishi, and T. Yotsuya, Jpn. J. Appl. Phys. 43, L439 (2004).
[CrossRef]

Konishi, T.

W. Yu, K. Satoh, H. Kikuta, T. Konishi, and T. Yotsuya, Jpn. J. Appl. Phys. 43, L439 (2004).
[CrossRef]

Kuittinen, M.

Magnusson, R.

R. Magnusson, M. Shokooh-Saremi, and X. Wang, Opt. Express 18, 108 (2010).
[CrossRef] [PubMed]

M. Shokooh-Saremi and R. Magnusson, Opt. Lett. 32, 894 (2007).
[CrossRef] [PubMed]

Y. Ding and R. Magnusson, Opt. Express 12, 5661 (2004).
[CrossRef] [PubMed]

S. S. Wang and R. Magnusson, Appl. Opt. 32, 2606 (1993).
[CrossRef] [PubMed]

R. Magnusson and Y. Ding, “Resonant leaky-mode optical devices and associated methods,” U.S. patent number 7,689,086 (March 30, 2010).

R. Magnusson and D. Shin, in Encyclopedia of Physical Science and Technology, 3rd ed. (Academic, 2002), Vol. 4, pp. 421–440.

Mashev, L.

L. Mashev and E. Popov, Opt. Comm. 55, 377 (1985).
[CrossRef]

Moharam, M. G.

Neviere, M.

P. Vincent and M. Neviere, Appl. Phys. 20, 345 (1979).
[CrossRef]

Pommet, D. A.

Popov, E.

L. Mashev and E. Popov, Opt. Comm. 55, 377 (1985).
[CrossRef]

Satoh, K.

W. Yu, K. Satoh, H. Kikuta, T. Konishi, and T. Yotsuya, Jpn. J. Appl. Phys. 43, L439 (2004).
[CrossRef]

Shin, D.

R. Magnusson and D. Shin, in Encyclopedia of Physical Science and Technology, 3rd ed. (Academic, 2002), Vol. 4, pp. 421–440.

Shokooh-Saremi, M.

Svakhin, A. S.

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, Sov. J. Quantum Electron. 15, 886 (1985).
[CrossRef]

Sychugov, V. A.

I. A. Avrutsky and V. A. Sychugov, J. Mod. Opt. 36, 1527 (1989).
[CrossRef]

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, Sov. J. Quantum Electron. 15, 886 (1985).
[CrossRef]

Tervo, J.

Tishchenko, A. V.

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, Sov. J. Quantum Electron. 15, 886 (1985).
[CrossRef]

Vartiainen, I.

Vincent, P.

P. Vincent and M. Neviere, Appl. Phys. 20, 345 (1979).
[CrossRef]

Wang, S. S.

Wang, X.

Yotsuya, T.

W. Yu, K. Satoh, H. Kikuta, T. Konishi, and T. Yotsuya, Jpn. J. Appl. Phys. 43, L439 (2004).
[CrossRef]

Yu, W.

W. Yu, K. Satoh, H. Kikuta, T. Konishi, and T. Yotsuya, Jpn. J. Appl. Phys. 43, L439 (2004).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. (1)

P. Vincent and M. Neviere, Appl. Phys. 20, 345 (1979).
[CrossRef]

J. Mod. Opt. (1)

I. A. Avrutsky and V. A. Sychugov, J. Mod. Opt. 36, 1527 (1989).
[CrossRef]

J. Opt. Soc. Am. A (1)

Jpn. J. Appl. Phys. (1)

W. Yu, K. Satoh, H. Kikuta, T. Konishi, and T. Yotsuya, Jpn. J. Appl. Phys. 43, L439 (2004).
[CrossRef]

Opt. Comm. (1)

L. Mashev and E. Popov, Opt. Comm. 55, 377 (1985).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Sov. J. Quantum Electron. (1)

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, Sov. J. Quantum Electron. 15, 886 (1985).
[CrossRef]

Other (4)

R. Magnusson and Y. Ding, “Resonant leaky-mode optical devices and associated methods,” U.S. patent number 7,689,086 (March 30, 2010).

E. Hecht, Optics, 4th ed. (Addison-Wesley, 2002).

R. Magnusson and D. Shin, in Encyclopedia of Physical Science and Technology, 3rd ed. (Academic, 2002), Vol. 4, pp. 421–440.

R. Eberhart and J. Kennedy, in Proceedings of IEEE Conference on Neural Networks (IEEE, 1995), pp. 1942–1948.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic profile of a half-wave plate structure. (b) Reflectance ( R 0 ) and spectral phase ( ϕ R ) response of the PSO-designed element for TE and TM polarizations. The parameters are Λ = 786.8 nm , F = 0.2665 , d 1 = 525.3 nm , and d 2 = 624.6 nm . Refractive indices are n H = 3.48 , n Sub = 1.48 , and n inc = 1.0 .

Fig. 2
Fig. 2

(a) Structure of a wideband half-wave retarder designed with PSO. (b) Reflectance and spectral phase response of the element for TE and TM polarizations. The parameters are Λ = 780.9 nm , F = 0.4876 , d 1 = 1086.2 nm , and d 2 = 375.3 nm with n H 1 = 3.48 and n H 2 = 2.0 .

Fig. 3
Fig. 3

Reflectance and spectral phase response of a PSO-designed quarter-wave plate for TE and TM polarizations. The profile of the element is the same as in Fig. 2a. The parameters are Λ = 878.9 nm , F = 0.3072 , d 1 = 586.1 nm , and d 2 = 413.8 nm .

Fig. 4
Fig. 4

Reflectance and spectral phase difference of the design in Fig. 1 under ± 5.0 % deviation in (a) silicon thickness ( d 2 ) and (b) grating fill factor (F).

Metrics