Abstract

We introduce half-wave and quarter-wave retarders based on the dispersion properties of guided-mode resonance elements. We design the wave plates using numerical electromagnetic models joined with the particle swarm optimization method. The wave plates operate in reflection. We provide computed results for reflectance and phase in the telecommunication spectral region near 1.55μm wavelength. A surface-relief grating etched in glass and overcoated with silicon yields a half-wave plate with nearly equal amplitudes of the TE and TM polarization components and π phase difference across a bandwidth exceeding 50nm. Wider operational bandwidths are obtainable with more complex designs involving glass substrates and mixed silicon/hafnium dioxide resonant gratings. The results indicate a potential new approach to fashion optical retarders.

© 2010 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design, manufacturing, and performance analysis of mid-infrared achromatic half-wave plates with diamond subwavelength gratings

Christian Delacroix, Pontus Forsberg, Mikael Karlsson, Dimitri Mawet, Olivier Absil, Charles Hanot, Jean Surdej, and Serge Habraken
Appl. Opt. 51(24) 5897-5902 (2012)

Wideband leaky-mode resonance reflectors: Influence of grating profile and sublayers

Mehrdad Shokooh-Saremi and Robert Magnusson
Opt. Express 16(22) 18249-18263 (2008)

Efficient and broadband quarter-wave plates by gap-plasmon resonators

Anders Pors and Sergey I. Bozhevolnyi
Opt. Express 21(3) 2942-2952 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription